IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0048413.html
   My bibliography  Save this article

Selective Constraint on the Upstream Open Reading Frames That Overlap with Coding Sequences in Animals

Author

Listed:
  • Ming-Kung Hsu
  • Feng-Chi Chen

Abstract

Upstream open reading frames (uORFs) are translational regulatory elements located in 5′ untranslated regions. They can significantly repress the translation of the downstream coding sequences (CDS), and participate in the spatio-temporal regulations of protein translation. Notwithstanding this biological significance, the selective constraint on uORFs remains underexplored. Particularly, the uORFs that partially overlap with CDS with a different reading frame (overlapping uORFs, or “VuORFs”) may lead to strong translational inhibition or N-terminal truncation of the peptides encoded by the affected CDS. By analyzing VuORF-containing transcripts (designated as “VuORF transcripts”) in human, mouse, and fruit fly, we demonstrate that VuORFs are in general slightly deleterious - the proportion of genes that encode at least one VuORF transcript is significantly smaller than expected in all of the three examined species. In addition, this proportion is significantly smaller in fruit fly than in mammals, indicating a higher efficiency of removing VuORFs in the former species because of its larger effective population size. Furthermore, the deleterious effect of a VuORF depends on the sequence context of its start codon (VuAUG). VuORFs with an optimal VuAUG context are more strongly disfavored than those with a suboptimal context in all of the three examined species. And the propensity to remove optimal-context VuAUGs is stronger in fruit fly than in mammals. Intriguingly, however, the currently observable optimal-context VuAUGs (but not suboptimal-context VuAUGs) are more conserved than expected. These observations suggest that the regulatory functions of VuORFs may have been gained fortuitously in organisms with a small effective population size because the slightly deleterious effect of these elements can be better tolerated in these organisms, thus allowing opportunities for the development of novel biological functions. Nevertheless, once the functions of VuORFs were established, they became subject to negative selection.

Suggested Citation

  • Ming-Kung Hsu & Feng-Chi Chen, 2012. "Selective Constraint on the Upstream Open Reading Frames That Overlap with Coding Sequences in Animals," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-8, November.
  • Handle: RePEc:plo:pone00:0048413
    DOI: 10.1371/journal.pone.0048413
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0048413
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0048413&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0048413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0048413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.