IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0046428.html
   My bibliography  Save this article

A Measure of Total Research Impact Independent of Time and Discipline

Author

Listed:
  • Alberto Pepe
  • Michael J Kurtz

Abstract

Authorship and citation practices evolve with time and differ by academic discipline. As such, indicators of research productivity based on citation records are naturally subject to historical and disciplinary effects. We observe these effects on a corpus of astronomer career data constructed from a database of refereed publications. We employ a simple mechanism to measure research output using author and reference counts available in bibliographic databases to develop a citation-based indicator of research productivity. The total research impact (tori) quantifies, for an individual, the total amount of scholarly work that others have devoted to his/her work, measured in the volume of research papers. A derived measure, the research impact quotient (riq), is an age-independent measure of an individual's research ability. We demonstrate that these measures are substantially less vulnerable to temporal debasement and cross-disciplinary bias than the most popular current measures. The proposed measures of research impact, tori and riq, have been implemented in the Smithsonian/NASA Astrophysics Data System.

Suggested Citation

  • Alberto Pepe & Michael J Kurtz, 2012. "A Measure of Total Research Impact Independent of Time and Discipline," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-7, November.
  • Handle: RePEc:plo:pone00:0046428
    DOI: 10.1371/journal.pone.0046428
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0046428
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0046428&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0046428?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leo Egghe, 2006. "Theory and practise of the g-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 131-152, October.
    2. Michael J. Kurtz & Guenther Eichhorn & Alberto Accomazzi & Carolyn Grant & Markus Demleitner & Stephen S. Murray & Nathalie Martimbeau & Barbara Elwell, 2005. "The bibliometric properties of article readership information," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 56(2), pages 111-128, January.
    3. Pablo D. Batista & Mônica G. Campiteli & Osame Kinouchi, 2006. "Is it possible to compare researchers with different scientific interests?," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(1), pages 179-189, July.
    4. David A. King, 2004. "The scientific impact of nations," Nature, Nature, vol. 430(6997), pages 311-316, July.
    5. Zitt, Michel, 2010. "Citing-side normalization of journal impact: A robust variant of the Audience Factor," Journal of Informetrics, Elsevier, vol. 4(3), pages 392-406.
    6. M. Zitt, 2011. "Behind citing-side normalization of citations: some properties of the journal impact factor," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 329-344, October.
    7. Moed, Henk F., 2010. "Measuring contextual citation impact of scientific journals," Journal of Informetrics, Elsevier, vol. 4(3), pages 265-277.
    8. Chun-Ting Zhang, 2009. "The e-Index, Complementing the h-Index for Excess Citations," PLOS ONE, Public Library of Science, vol. 4(5), pages 1-4, May.
    9. Loet Leydesdorff & Jung C. Shin, 2011. "How to evaluate universities in terms of their relative citation impacts: Fractional counting of citations and the normalization of differences among disciplines," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(6), pages 1146-1155, June.
    10. Michael J. Kurtz & Guenther Eichhorn & Alberto Accomazzi & Carolyn Grant & Markus Demleitner & Stephen S. Murray, 2005. "Worldwide use and impact of the NASA Astrophysics Data System digital library," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 56(1), pages 36-45, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frank Havemann & Birger Larsen, 2015. "Bibliometric indicators of young authors in astrophysics: Can later stars be predicted?," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1413-1434, February.
    2. Giovanni Abramo & Ciriaco Andrea D’Angelo, 2014. "How do you define and measure research productivity?," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1129-1144, November.
    3. Gobinda Chowdhury & Kushwanth Koya & Pete Philipson, 2016. "Measuring the Impact of Research: Lessons from the UK’s Research Excellence Framework 2014," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-15, June.
    4. Giovanni Abramo & Corrado Costa & Ciriaco Andrea D’Angelo, 2015. "A multivariate stochastic model to assess research performance," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1755-1772, February.
    5. Aliakbar Akbaritabar & Niccolò Casnici & Flaminio Squazzoni, 2018. "The conundrum of research productivity: a study on sociologists in Italy," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 859-882, March.
    6. Shaon Sahoo, 2016. "Analyzing research performance: proposition of a new complementary index," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 489-504, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    2. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    3. Kaur, Jasleen & Radicchi, Filippo & Menczer, Filippo, 2013. "Universality of scholarly impact metrics," Journal of Informetrics, Elsevier, vol. 7(4), pages 924-932.
    4. Fiorenzo Franceschini & Maurizio Galetto & Domenico Maisano & Luca Mastrogiacomo, 2012. "The success-index: an alternative approach to the h-index for evaluating an individual’s research output," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(3), pages 621-641, September.
    5. Lorna Wildgaard & Jesper W. Schneider & Birger Larsen, 2014. "A review of the characteristics of 108 author-level bibliometric indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 125-158, October.
    6. Mingers, John & Leydesdorff, Loet, 2015. "A review of theory and practice in scientometrics," European Journal of Operational Research, Elsevier, vol. 246(1), pages 1-19.
    7. Ludo Waltman & Nees Jan Eck, 2013. "Source normalized indicators of citation impact: an overview of different approaches and an empirical comparison," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(3), pages 699-716, September.
    8. Radicchi, Filippo & Castellano, Claudio, 2012. "Testing the fairness of citation indicators for comparison across scientific domains: The case of fractional citation counts," Journal of Informetrics, Elsevier, vol. 6(1), pages 121-130.
    9. Zhang, Lin & Thijs, Bart & Glänzel, Wolfgang, 2011. "The diffusion of H-related literature," Journal of Informetrics, Elsevier, vol. 5(4), pages 583-593.
    10. Liwei Cai & Jiahao Tian & Jiaying Liu & Xiaomei Bai & Ivan Lee & Xiangjie Kong & Feng Xia, 2019. "Scholarly impact assessment: a survey of citation weighting solutions," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(2), pages 453-478, February.
    11. Bouyssou, Denis & Marchant, Thierry, 2016. "Ranking authors using fractional counting of citations: An axiomatic approach," Journal of Informetrics, Elsevier, vol. 10(1), pages 183-199.
    12. Franceschini, Fiorenzo & Maisano, Domenico, 2014. "Sub-field normalization of the IEEE scientific journals based on their connection with Technical Societies," Journal of Informetrics, Elsevier, vol. 8(3), pages 508-533.
    13. Waltman, Ludo & van Eck, Nees Jan & van Leeuwen, Thed N. & Visser, Martijn S., 2013. "Some modifications to the SNIP journal impact indicator," Journal of Informetrics, Elsevier, vol. 7(2), pages 272-285.
    14. Waltman, Ludo & van Eck, Nees Jan, 2013. "A systematic empirical comparison of different approaches for normalizing citation impact indicators," Journal of Informetrics, Elsevier, vol. 7(4), pages 833-849.
    15. Aurelia Magdalena Pisoschi & Claudia Gabriela Pisoschi, 2016. "Is open access the solution to increase the impact of scientific journals?," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 1075-1095, November.
    16. Parul Khurana & Kiran Sharma, 2022. "Impact of h-index on author’s rankings: an improvement to the h-index for lower-ranked authors," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4483-4498, August.
    17. Judit Bar-Ilan, 2012. "Journal report card," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(2), pages 249-260, August.
    18. Wolfgang Glänzel & Henk F. Moed, 2013. "Opinion paper: thoughts and facts on bibliometric indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 381-394, July.
    19. Cristiano Varin & Manuela Cattelan & David Firth, 2016. "Statistical modelling of citation exchange between statistics journals," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 1-63, January.
    20. Basma Albanna & Julia Handl & Richard Heeks, 2021. "Publication outperformance among global South researchers: An analysis of individual-level and publication-level predictors of positive deviance," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8375-8431, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0046428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.