Author
Listed:
- Marianne Renner
- Claude Schweizer
- Hiroko Bannai
- Antoine Triller
- Sabine Lévi
Abstract
The flux of neurotransmitter receptors in and out of synapses depends on receptor interaction with scaffolding molecules. However, the crowd of transmembrane proteins and the rich cytoskeletal environment may constitute obstacles to the diffusion of receptors within the synapse. To address this question, we studied the membrane diffusion of the γ-aminobutyric acid type A receptor (GABAAR) subunits clustered (γ2) or not (α5) at inhibitory synapses in rat hippocampal dissociated neurons. Relative to the extrasynaptic region, γ2 and α5 showed reduced diffusion and increased confinement at both inhibitory and excitatory synapses but they dwelled for a short time at excitatory synapses. In contrast, γ2 was ∼3-fold more confined and dwelled ∼3-fold longer in inhibitory synapses than α5, indicating faster synaptic escape of α5. Furthermore, using a gephyrin dominant-negative approach, we showed that the increased residency time of γ2 at inhibitory synapses was due to receptor-scaffold interactions. As shown for GABAAR, the excitatory glutamate receptor 2 subunit (GluA2) of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) had lower mobility in both excitatory and inhibitory synapses but a higher residency time at excitatory synapses. Therefore barriers impose significant diffusion constraints onto receptors at synapses where they accumulate or not. Our data further reveal that the confinement and the dwell time but not the diffusion coefficient report on the synapse specific sorting, trapping and accumulation of receptors.
Suggested Citation
Marianne Renner & Claude Schweizer & Hiroko Bannai & Antoine Triller & Sabine Lévi, 2012.
"Diffusion Barriers Constrain Receptors at Synapses,"
PLOS ONE, Public Library of Science, vol. 7(8), pages 1-14, August.
Handle:
RePEc:plo:pone00:0043032
DOI: 10.1371/journal.pone.0043032
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0043032. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.