IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0041018.html
   My bibliography  Save this article

Comparison of Methods for Competitive Tests of Pathway Analysis

Author

Listed:
  • Marina Evangelou
  • Augusto Rendon
  • Willem H Ouwehand
  • Lorenz Wernisch
  • Frank Dudbridge

Abstract

It has been suggested that pathway analysis can complement single-SNP analysis in exploring genomewide association data. Pathway analysis incorporates the available biological knowledge of genes and SNPs and is expected to improve the chances of revealing the underlying genetic architecture of complex traits. Methods for pathway analysis can be classified as competitive (enrichment) or self-contained (association) according to the hypothesis tested. Although association tests are statistically more powerful than enrichment tests they can be difficult to calibrate because biases in analysis accumulate across multiple SNPs or genes. Furthermore, enrichment tests can be more scientifically relevant than association tests, as they detect pathways with relatively more evidence for association than the remaining genes. Here we show how some well known association tests can be simply adapted to test for enrichment, and compare their performance to some established enrichment tests. We propose versions of the Adaptive Rank Truncated Product (ARTP), Tail Strength Measure and Fisher’s combination of p-values for testing the enrichment null hypothesis. We compare the behaviour of these proposed methods with the established Hypergeometric Test and Gene-Set Enrichment Analysis (GSEA). The results of the simulation study show that the modified version of the ARTP method has generally the best performance across the situations considered. The methods were also applied for finding enriched pathways for body mass index (BMI) and platelet function phenotypes. The pathway analysis of BMI identified the Vasoactive Intestinal Peptide pathway as significantly associated with BMI. This pathway has been previously reported as associated with BMI and the risk of obesity. The ARTP method was the method that identified the largest number of enriched pathways across all tested pathway databases and phenotypes. The simulation and data application results are in agreement with previous work on association tests and suggests that the ARTP should be preferred for both enrichment and association testing.

Suggested Citation

  • Marina Evangelou & Augusto Rendon & Willem H Ouwehand & Lorenz Wernisch & Frank Dudbridge, 2012. "Comparison of Methods for Competitive Tests of Pathway Analysis," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-10, July.
  • Handle: RePEc:plo:pone00:0041018
    DOI: 10.1371/journal.pone.0041018
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041018
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0041018&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0041018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthew W Mitchell, 2015. "A Comparison of Aggregate P-Value Methods and Multivariate Statistics for Self-Contained Tests of Metabolic Pathway Analysis," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-17, April.
    2. Hao Ye & Hui Wen Ng & Sugunadevi Sakkiah & Weigong Ge & Roger Perkins & Weida Tong & Huixiao Hong, 2016. "Pathway Analysis Revealed Potential Diverse Health Impacts of Flavonoids that Bind Estrogen Receptors," IJERPH, MDPI, vol. 13(4), pages 1-17, March.
    3. Nadja Knoll & Ivonne Jarick & Anna-Lena Volckmar & Martin Klingenspor & Thomas Illig & Harald Grallert & Christian Gieger & Heinz-Erich Wichmann & Annette Peters & Johannes Hebebrand & André Scherag &, 2013. "Gene Set of Nuclear-Encoded Mitochondrial Regulators Is Enriched for Common Inherited Variation in Obesity," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-10, February.
    4. Han Zhang & William Wheeler & Paula L Hyland & Yifan Yang & Jianxin Shi & Nilanjan Chatterjee & Kai Yu, 2016. "A Powerful Procedure for Pathway-Based Meta-analysis Using Summary Statistics Identifies 43 Pathways Associated with Type II Diabetes in European Populations," PLOS Genetics, Public Library of Science, vol. 12(6), pages 1-28, June.
    5. Tae Yang, 2015. "A GS-CORE algorithm for performing a reduction test on multiple gene sets and their core genes," Computational Statistics, Springer, vol. 30(1), pages 29-41, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0041018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.