IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0040598.html
   My bibliography  Save this article

ROCS: Receiver Operating Characteristic Surface for Class-Skewed High-Throughput Data

Author

Listed:
  • Tianwei Yu

Abstract

The receiver operating characteristic (ROC) curve is an important tool to gauge the performance of classifiers. In certain situations of high-throughput data analysis, the data is heavily class-skewed, i.e. most features tested belong to the true negative class. In such cases, only a small portion of the ROC curve is relevant in practical terms, rendering the ROC curve and its area under the curve (AUC) insufficient for the purpose of judging classifier performance. Here we define an ROC surface (ROCS) using true positive rate (TPR), false positive rate (FPR), and true discovery rate (TDR). The ROC surface, together with the associated quantities, volume under the surface (VUS) and FDR-controlled area under the ROC curve (FCAUC), provide a useful approach for gauging classifier performance on class-skewed high-throughput data. The implementation as an R package is available at http://userwww.service.emory.edu/~tyu8/ROCS/.

Suggested Citation

  • Tianwei Yu, 2012. "ROCS: Receiver Operating Characteristic Surface for Class-Skewed High-Throughput Data," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-8, July.
  • Handle: RePEc:plo:pone00:0040598
    DOI: 10.1371/journal.pone.0040598
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0040598
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0040598&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0040598?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peizhou Liao & Hao Wu & Tianwei Yu, 2017. "ROC Curve Analysis in the Presence of Imperfect Reference Standards," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 91-104, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0040598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.