IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0039194.html
   My bibliography  Save this article

Characterizing Multistationarity Regimes in Biochemical Reaction Networks

Author

Listed:
  • Irene Otero-Muras
  • Julio R Banga
  • Antonio A Alonso

Abstract

Switch like responses appear as common strategies in the regulation of cellular systems. Here we present a method to characterize bistable regimes in biochemical reaction networks that can be of use to both direct and reverse engineering of biological switches. In the design of a synthetic biological switch, it is important to study the capability for bistability of the underlying biochemical network structure. Chemical Reaction Network Theory (CRNT) may help at this level to decide whether a given network has the capacity for multiple positive equilibria, based on their structural properties. However, in order to build a working switch, we also need to ensure that the bistability property is robust, by studying the conditions leading to the existence of two different steady states. In the reverse engineering of biological switches, knowledge collected about the bistable regimes of the underlying potential model structures can contribute at the model identification stage to a drastic reduction of the feasible region in the parameter space of search. In this work, we make use and extend previous results of the CRNT, aiming not only to discriminate whether a biochemical reaction network can exhibit multiple steady states, but also to determine the regions within the whole space of parameters capable of producing multistationarity. To that purpose we present and justify a condition on the parameters of biochemical networks for the appearance of multistationarity, and propose an efficient and reliable computational method to check its satisfaction through the parameter space.

Suggested Citation

  • Irene Otero-Muras & Julio R Banga & Antonio A Alonso, 2012. "Characterizing Multistationarity Regimes in Biochemical Reaction Networks," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-12, July.
  • Handle: RePEc:plo:pone00:0039194
    DOI: 10.1371/journal.pone.0039194
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0039194
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0039194&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0039194?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irene Otero-Muras & Pencho Yordanov & Joerg Stelling, 2017. "Chemical Reaction Network Theory elucidates sources of multistability in interferon signaling," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-28, April.
    2. Antonio A. Alonso & Irene Otero-Muras & Manuel Pájaro, 2018. "Routes to Multiple Equilibria for Mass-Action Kinetic Systems," Complexity, Hindawi, vol. 2018, pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0039194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.