IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0038772.html
   My bibliography  Save this article

PMeS: Prediction of Methylation Sites Based on Enhanced Feature Encoding Scheme

Author

Listed:
  • Shao-Ping Shi
  • Jian-Ding Qiu
  • Xing-Yu Sun
  • Sheng-Bao Suo
  • Shu-Yun Huang
  • Ru-Ping Liang

Abstract

Protein methylation is predominantly found on lysine and arginine residues, and carries many important biological functions, including gene regulation and signal transduction. Given their important involvement in gene expression, protein methylation and their regulatory enzymes are implicated in a variety of human disease states such as cancer, coronary heart disease and neurodegenerative disorders. Thus, identification of methylation sites can be very helpful for the drug designs of various related diseases. In this study, we developed a method called PMeS to improve the prediction of protein methylation sites based on an enhanced feature encoding scheme and support vector machine. The enhanced feature encoding scheme was composed of the sparse property coding, normalized van der Waals volume, position weight amino acid composition and accessible surface area. The PMeS achieved a promising performance with a sensitivity of 92.45%, a specificity of 93.18%, an accuracy of 92.82% and a Matthew’s correlation coefficient of 85.69% for arginine as well as a sensitivity of 84.38%, a specificity of 93.94%, an accuracy of 89.16% and a Matthew’s correlation coefficient of 78.68% for lysine in 10-fold cross validation. Compared with other existing methods, the PMeS provides better predictive performance and greater robustness. It can be anticipated that the PMeS might be useful to guide future experiments needed to identify potential methylation sites in proteins of interest. The online service is available at http://bioinfo.ncu.edu.cn/inquiries_PMeS.aspx.

Suggested Citation

  • Shao-Ping Shi & Jian-Ding Qiu & Xing-Yu Sun & Sheng-Bao Suo & Shu-Yun Huang & Ru-Ping Liang, 2012. "PMeS: Prediction of Methylation Sites Based on Enhanced Feature Encoding Scheme," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-11, June.
  • Handle: RePEc:plo:pone00:0038772
    DOI: 10.1371/journal.pone.0038772
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0038772
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0038772&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0038772?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew J. Bannister & Tony Kouzarides, 2005. "Reversing histone methylation," Nature, Nature, vol. 436(7054), pages 1103-1106, August.
    2. Jianlin Shao & Dong Xu & Sau-Na Tsai & Yifei Wang & Sai-Ming Ngai, 2009. "Computational Identification of Protein Methylation Sites through Bi-Profile Bayes Feature Extraction," PLOS ONE, Public Library of Science, vol. 4(3), pages 1-7, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiqige Wuyun & Wei Zheng & Yanping Zhang & Jishou Ruan & Gang Hu, 2016. "Improved Species-Specific Lysine Acetylation Site Prediction Based on a Large Variety of Features Set," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenzheng Bao & Bin Yang & Rong Bao & Yuehui Chen, 2019. "LipoFNT: Lipoylation Sites Identification with Flexible Neural Tree," Complexity, Hindawi, vol. 2019, pages 1-9, July.
    2. Yan Xu & Jun Ding & Ling-Yun Wu & Kuo-Chen Chou, 2013. "iSNO-PseAAC: Predict Cysteine S-Nitrosylation Sites in Proteins by Incorporating Position Specific Amino Acid Propensity into Pseudo Amino Acid Composition," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-7, February.
    3. Jiangning Song & Hao Tan & Andrew J Perry & Tatsuya Akutsu & Geoffrey I Webb & James C Whisstock & Robert N Pike, 2012. "PROSPER: An Integrated Feature-Based Tool for Predicting Protease Substrate Cleavage Sites," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-23, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0038772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.