Author
Listed:
- Sarah D Power
- Azadeh Kushki
- Tom Chau
Abstract
Near-infrared spectroscopy (NIRS) has been recently investigated for use in noninvasive brain-computer interface (BCI) technologies. Previous studies have demonstrated the ability to classify patterns of neural activation associated with different mental tasks (e.g., mental arithmetic) using NIRS signals. Though these studies represent an important step towards the realization of an NIRS-BCI, there is a paucity of literature regarding the consistency of these responses, and the ability to classify them on a single-trial basis, over multiple sessions. This is important when moving out of an experimental context toward a practical system, where performance must be maintained over longer periods. When considering response consistency across sessions, two questions arise: 1) can the hemodynamic response to the activation task be distinguished from a baseline (or other task) condition, consistently across sessions, and if so, 2) are the spatiotemporal characteristics of the response which best distinguish it from the baseline (or other task) condition consistent across sessions. The answers will have implications for the viability of an NIRS-BCI system, and the design strategies (especially in terms of classifier training protocols) adopted. In this study, we investigated the consistency of classification of a mental arithmetic task and a no-control condition over five experimental sessions. Mixed model linear regression on intrasession classification accuracies indicate that the task and baseline states remain differentiable across multiple sessions, with no significant decrease in accuracy (p = 0.67). Intersession analysis, however, revealed inconsistencies in spatiotemporal response characteristics. Based on these results, we investigated several different practical classifier training protocols, including scenarios in which the training and test data come from 1) different sessions, 2) the same session, and 3) a combination of both. Results indicate that when selecting optimal classifier training protocols for NIRS-BCI, a compromise between accuracy and convenience (e.g., in terms of duration/frequency of training data collection) must be considered.
Suggested Citation
Sarah D Power & Azadeh Kushki & Tom Chau, 2012.
"Intersession Consistency of Single-Trial Classification of the Prefrontal Response to Mental Arithmetic and the No-Control State by NIRS,"
PLOS ONE, Public Library of Science, vol. 7(7), pages 1-12, July.
Handle:
RePEc:plo:pone00:0037791
DOI: 10.1371/journal.pone.0037791
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0037791. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.