IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0036223.html
   My bibliography  Save this article

Properties of V1 Neurons Tuned to Conjunctions of Visual Features: Application of the V1 Saliency Hypothesis to Visual Search behavior

Author

Listed:
  • Li Zhaoping
  • Li Zhe

Abstract

From a computational theory of V1, we formulate an optimization problem to investigate neural properties in the primary visual cortex (V1) from human reaction times (RTs) in visual search. The theory is the V1 saliency hypothesis that the bottom-up saliency of any visual location is represented by the highest V1 response to it relative to the background responses. The neural properties probed are those associated with the less known V1 neurons tuned simultaneously or conjunctively in two feature dimensions. The visual search is to find a target bar unique in color (C), orientation (O), motion direction (M), or redundantly in combinations of these features (e.g., CO, MO, or CM) among uniform background bars. A feature singleton target is salient because its evoked V1 response largely escapes the iso-feature suppression on responses to the background bars. The responses of the conjunctively tuned cells are manifested in the shortening of the RT for a redundant feature target (e.g., a CO target) from that predicted by a race between the RTs for the two corresponding single feature targets (e.g., C and O targets). Our investigation enables the following testable predictions. Contextual suppression on the response of a CO-tuned or MO-tuned conjunctive cell is weaker when the contextual inputs differ from the direct inputs in both feature dimensions, rather than just one. Additionally, CO-tuned cells and MO-tuned cells are often more active than the single feature tuned cells in response to the redundant feature targets, and this occurs more frequently for the MO-tuned cells such that the MO-tuned cells are no less likely than either the M-tuned or O-tuned neurons to be the most responsive neuron to dictate saliency for an MO target.

Suggested Citation

  • Li Zhaoping & Li Zhe, 2012. "Properties of V1 Neurons Tuned to Conjunctions of Visual Features: Application of the V1 Saliency Hypothesis to Visual Search behavior," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-15, June.
  • Handle: RePEc:plo:pone00:0036223
    DOI: 10.1371/journal.pone.0036223
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0036223
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0036223&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0036223?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Zhaoping & Li Zhe, 2015. "Primary Visual Cortex as a Saliency Map: A Parameter-Free Prediction and Its Test by Behavioral Data," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-39, October.
    2. Malte Persike & Günter Meinhardt, 2015. "Effects of Spatial Frequency Similarity and Dissimilarity on Contour Integration," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-19, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0036223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.