IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0033910.html
   My bibliography  Save this article

Comparison of Statistical Population Reconstruction Using Full and Pooled Adult Age-Class Data

Author

Listed:
  • John R Skalski
  • Joshua J Millspaugh
  • Michael V Clawson

Abstract

Background: Age-at-harvest data are among the most commonly collected, yet neglected, demographic data gathered by wildlife agencies. Statistical population construction techniques can use this information to estimate the abundance of wild populations over wide geographic areas and concurrently estimate recruitment, harvest, and natural survival rates. Although current reconstruction techniques use full age-class data (0.5, 1.5, 2.5, 3.5, … years), it is not always possible to determine an animal's age due to inaccuracy of the methods, expense, and logistics of sample collection. The ability to inventory wild populations would be greatly expanded if pooled adult age-class data (e.g., 0.5, 1.5, 2.5+ years) could be successfully used in statistical population reconstruction. Methodology/Principal Findings: We investigated the performance of statistical population reconstruction models developed to analyze full age-class and pooled adult age-class data. We performed Monte Carlo simulations using a stochastic version of a Leslie matrix model, which generated data over a wide range of abundance levels, harvest rates, and natural survival probabilities, representing medium-to-big game species. Results of full age-class and pooled adult age-class population reconstructions were compared for accuracy and precision. No discernible difference in accuracy was detected, but precision was slightly reduced when using the pooled adult age-class reconstruction. On average, the coefficient of variation increased by 0.059 when the adult age-class data were pooled prior to analyses. The analyses and maximum likelihood model for pooled adult age-class reconstruction are illustrated for a black-tailed deer (Odocoileus hemionus) population in Washington State. Conclusions/Significance: Inventorying wild populations is one of the greatest challenges of wildlife agencies. These new statistical population reconstruction models should expand the demographic capabilities of wildlife agencies that have already collected pooled adult age-class data or are seeking a cost-effective method for monitoring the status and trends of our wild resources.

Suggested Citation

  • John R Skalski & Joshua J Millspaugh & Michael V Clawson, 2012. "Comparison of Statistical Population Reconstruction Using Full and Pooled Adult Age-Class Data," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-7, March.
  • Handle: RePEc:plo:pone00:0033910
    DOI: 10.1371/journal.pone.0033910
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0033910
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0033910&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0033910?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergey S. Berg, 2023. "Utility of Particle Swarm Optimization in Statistical Population Reconstruction," Mathematics, MDPI, vol. 11(4), pages 1-28, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0033910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.