IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0032844.html
   My bibliography  Save this article

Search Filters for Finding Prognostic and Diagnostic Prediction Studies in Medline to Enhance Systematic Reviews

Author

Listed:
  • Geert-Jan Geersing
  • Walter Bouwmeester
  • Peter Zuithoff
  • Rene Spijker
  • Mariska Leeflang
  • Karel Moons

Abstract

Background: The interest in prognostic reviews is increasing, but to properly review existing evidence an accurate search filer for finding prediction research is needed. The aim of this paper was to validate and update two previously introduced search filters for finding prediction research in Medline: the Ingui filter and the Haynes Broad filter. Methodology/Principal Findings: Based on a hand search of 6 general journals in 2008 we constructed two sets of papers. Set 1 consisted of prediction research papers (n = 71), and set 2 consisted of the remaining papers (n = 1133). Both search filters were validated in two ways, using diagnostic accuracy measures as performance measures. First, we compared studies in set 1 (reference) with studies retrieved by the search strategies as applied in Medline. Second, we compared studies from 4 published systematic reviews (reference) with studies retrieved by the search filter as applied in Medline. Next – using word frequency methods – we constructed an additional search string for finding prediction research. Both search filters were good in identifying clinical prediction models: sensitivity ranged from 0.94 to 1.0 using our hand search as reference, and 0.78 to 0.89 using the systematic reviews as reference. This latter performance measure even increased to around 0.95 (range 0.90 to 0.97) when either search filter was combined with the additional string that we developed. Retrieval rate of explorative prediction research was poor, both using our hand search or our systematic review as reference, and even combined with our additional search string: sensitivity ranged from 0.44 to 0.85. Conclusions/Significance: Explorative prediction research is difficult to find in Medline, using any of the currently available search filters. Yet, application of either the Ingui filter or the Haynes broad filter results in a very low number missed clinical prediction model studies.

Suggested Citation

  • Geert-Jan Geersing & Walter Bouwmeester & Peter Zuithoff & Rene Spijker & Mariska Leeflang & Karel Moons, 2012. "Search Filters for Finding Prognostic and Diagnostic Prediction Studies in Medline to Enhance Systematic Reviews," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-6, February.
  • Handle: RePEc:plo:pone00:0032844
    DOI: 10.1371/journal.pone.0032844
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0032844
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0032844&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0032844?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjuan Wang & Martin Kiik & Niels Peek & Vasa Curcin & Iain J Marshall & Anthony G Rudd & Yanzhong Wang & Abdel Douiri & Charles D Wolfe & Benjamin Bray, 2020. "A systematic review of machine learning models for predicting outcomes of stroke with structured data," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-16, June.
    2. Shamil D. Cooray & Lihini A. Wijeyaratne & Georgia Soldatos & John Allotey & Jacqueline A. Boyle & Helena J. Teede, 2020. "The Unrealised Potential for Predicting Pregnancy Complications in Women with Gestational Diabetes: A Systematic Review and Critical Appraisal," IJERPH, MDPI, vol. 17(9), pages 1-20, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0032844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.