IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0031628.html
   My bibliography  Save this article

Mass Homozygotes Accumulation in the NCI-60 Cancer Cell Lines As Compared to HapMap Trios, and Relation to Fragile Site Location

Author

Listed:
  • Xiaoyang Ruan
  • Jean-Pierre A Kocher
  • Yves Pommier
  • Hongfang Liu
  • William C Reinhold

Abstract

Runs of homozygosity (ROH) represents extended length of homozygotes on a long genomic distance. In oncology, it is known as loss of heterozygosity (LOH) if identified exclusively in cancer cell rather than in matched control cell. Studies have identified several genomic regions which show consistent ROH in different kinds of carcinoma. To query whether this consistency can be observed on broader spectrum, both in more cancer types and in wider genomic regions, we investigated ROH patterns in the National Cancer Institute 60 cancer cell line panel (NCI-60) and HapMap Caucasian healthy trio families. Using results from Affymetrix 500 K SNP arrays, we report a genome wide significant association of ROH regions between the NCI-60 and HapMap samples, with much a higher level of ROH (11 fold) in the cancer cell lines. Analysis shows that more severe ROH found in cancer cells appears to be the extension of existing ROH in healthy state. In the HapMap trios, the adult subgroup had a slightly but significantly higher level (1.02 fold) of ROH than did the young subgroup. For several ROH regions we observed the co-occurrence of fragile sites (FRAs). However, FRA on the genome wide level does not show a clear relationship with ROH regions.

Suggested Citation

  • Xiaoyang Ruan & Jean-Pierre A Kocher & Yves Pommier & Hongfang Liu & William C Reinhold, 2012. "Mass Homozygotes Accumulation in the NCI-60 Cancer Cell Lines As Compared to HapMap Trios, and Relation to Fragile Site Location," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-9, February.
  • Handle: RePEc:plo:pone00:0031628
    DOI: 10.1371/journal.pone.0031628
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0031628
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0031628&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0031628?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rameen Beroukhim & Ming Lin & Yuhyun Park & Ke Hao & Xiaojun Zhao & Levi A Garraway & Edward A Fox & Ephraim P Hochberg & Ingo K Mellinghoff & Matthias D Hofer & Aurelien Descazeaud & Mark A Rubin & M, 2006. "Inferring Loss-of-Heterozygosity from Unpaired Tumors Using High-Density Oligonucleotide SNP Arrays," PLOS Computational Biology, Public Library of Science, vol. 2(5), pages 1-10, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucia Ruojia Wu & Peng Dai & Michael Xiangjiang Wang & Sherry Xi Chen & Evan N. Cohen & Gitanjali Jayachandran & Jinny Xuemeng Zhang & Angela V. Serrano & Nina Guanyi Xie & Naoto T. Ueno & James M. Re, 2022. "Ensemble of nucleic acid absolute quantitation modules for copy number variation detection and RNA profiling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Ryan N. Ptashkin & Mark D. Ewalt & Gowtham Jayakumaran & Iwona Kiecka & Anita S. Bowman & JinJuan Yao & Jacklyn Casanova & Yun-Te David Lin & Kseniya Petrova-Drus & Abhinita S. Mohanty & Ruben Bacares, 2023. "Enhanced clinical assessment of hematologic malignancies through routine paired tumor and normal sequencing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Hao Chen & Haipeng Xing & Nancy R Zhang, 2011. "Estimation of Parent Specific DNA Copy Number in Tumors using High-Density Genotyping Arrays," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-15, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0031628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.