IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0031397.html
   My bibliography  Save this article

Use of Non-Amplified RNA Samples for Microarray Analysis of Gene Expression

Author

Listed:
  • Hiroko Sudo
  • Atsuko Mizoguchi
  • Junpei Kawauchi
  • Hideo Akiyama
  • Satoko Takizawa

Abstract

Demand for high quality gene expression data has driven the development of revolutionary microarray technologies. The quality of the data is affected by the performance of the microarray platform as well as how the nucleic acid targets are prepared. The most common method for target nucleic acid preparation includes in vitro transcription amplification of the sample RNA. Although this method requires a small amount of starting material and is reported to have high reproducibility, there are also technical disadvantages such as amplification bias and the long, laborious protocol. Using RNA derived from human brain, breast and colon, we demonstrate that a non-amplification method, which was previously shown to be inferior, could be transformed to a highly quantitative method with a dynamic range of five orders of magnitude. Furthermore, the correlation coefficient calculated by comparing microarray assays using non-amplified samples with qRT-PCR assays was approximately 0.9, a value much higher than when samples were prepared using amplification methods. Our results were also compared with data from various microarray platforms studied in the MicroArray Quality Control (MAQC) project. In combination with micro-columnar 3D-Gene™ microarray, this non-amplification method is applicable to a variety of genetic analyses, including biomarker screening and diagnostic tests for cancer.

Suggested Citation

  • Hiroko Sudo & Atsuko Mizoguchi & Junpei Kawauchi & Hideo Akiyama & Satoko Takizawa, 2012. "Use of Non-Amplified RNA Samples for Microarray Analysis of Gene Expression," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-6, February.
  • Handle: RePEc:plo:pone00:0031397
    DOI: 10.1371/journal.pone.0031397
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0031397
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0031397&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0031397?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fumiaki Sato & Soken Tsuchiya & Kazuya Terasawa & Gozoh Tsujimoto, 2009. "Intra-Platform Repeatability and Inter-Platform Comparability of MicroRNA Microarray Technology," PLOS ONE, Public Library of Science, vol. 4(5), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin-Xing Liu & Yong Xu & Chun-Hou Zheng & Yi Wang & Jing-Yu Yang, 2012. "Characteristic Gene Selection via Weighting Principal Components by Singular Values," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-10, July.
    2. Bin Wang & Paul Howel & Skjalg Bruheim & Jingfang Ju & Laurie B Owen & Oystein Fodstad & Yaguang Xi, 2011. "Systematic Evaluation of Three microRNA Profiling Platforms: Microarray, Beads Array, and Quantitative Real-Time PCR Array," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-12, February.
    3. Swanhild U Meyer & Sebastian Kaiser & Carola Wagner & Christian Thirion & Michael W Pfaffl, 2012. "Profound Effect of Profiling Platform and Normalization Strategy on Detection of Differentially Expressed MicroRNAs – A Comparative Study," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-13, June.
    4. Agnė Šatrauskienė & Rokas Navickas & Aleksandras Laucevičius & Tomas Krilavičius & Rūta Užupytė & Monika Zdanytė & Ligita Ryliškytė & Agnė Jucevičienė & Paul Holvoet, 2021. "Mir-1, miR-122, miR-132, and miR-133 Are Related to Subclinical Aortic Atherosclerosis Associated with Metabolic Syndrome," IJERPH, MDPI, vol. 18(4), pages 1-14, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0031397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.