IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0026952.html
   My bibliography  Save this article

Immune Response and Mitochondrial Metabolism Are Commonly Deregulated in DMD and Aging Skeletal Muscle

Author

Listed:
  • Daniel Baron
  • Armelle Magot
  • Gérard Ramstein
  • Marja Steenman
  • Guillemette Fayet
  • Catherine Chevalier
  • Philippe Jourdon
  • Rémi Houlgatte
  • Frédérique Savagner
  • Yann Pereon

Abstract

Duchenne Muscular Dystrophy (DMD) is a complex process involving multiple pathways downstream of the primary genetic insult leading to fatal muscle degeneration. Aging muscle is a multifactorial neuromuscular process characterized by impaired muscle regeneration leading to progressive atrophy. We hypothesized that these chronic atrophying situations may share specific myogenic adaptative responses at transcriptional level according to tissue remodeling. Muscle biopsies from four young DMD and four AGED subjects were referred to a group of seven muscle biopsies from young subjects without any neuromuscular disorder and explored through a dedicated expression microarray. We identified 528 differentially expressed genes (out of 2,745 analyzed), of which 328 could be validated by an exhaustive meta-analysis of public microarray datasets referring to DMD and Aging in skeletal muscle. Among the 328 validated co-expressed genes, 50% had the same expression profile in both groups and corresponded to immune/fibrosis responses and mitochondrial metabolism. Generalizing these observed meta-signatures with large compendia of public datasets reinforced our results as they could be also identified in other pathological processes and in diverse physiological conditions. Focusing on the common gene signatures in these two atrophying conditions, we observed enrichment in motifs for candidate transcription factors that may coordinate either the immune/fibrosis responses (ETS1, IRF1, NF1) or the mitochondrial metabolism (ESRRA). Deregulation in their expression could be responsible, at least in part, for the same transcriptome changes initiating the chronic muscle atrophy. This study suggests that distinct pathophysiological processes may share common gene responses and pathways related to specific transcription factors.

Suggested Citation

  • Daniel Baron & Armelle Magot & Gérard Ramstein & Marja Steenman & Guillemette Fayet & Catherine Chevalier & Philippe Jourdon & Rémi Houlgatte & Frédérique Savagner & Yann Pereon, 2011. "Immune Response and Mitochondrial Metabolism Are Commonly Deregulated in DMD and Aging Skeletal Muscle," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-11, November.
  • Handle: RePEc:plo:pone00:0026952
    DOI: 10.1371/journal.pone.0026952
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0026952
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0026952&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0026952?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adaikalavan Ramasamy & Adrian Mondry & Chris C Holmes & Douglas G Altman, 2008. "Key Issues in Conducting a Meta-Analysis of Gene Expression Microarray Datasets," PLOS Medicine, Public Library of Science, vol. 5(9), pages 1-13, September.
    2. Fabrice Lopez & Julien Textoris & Aurélie Bergon & Gilles Didier & Elisabeth Remy & Samuel Granjeaud & Jean Imbert & Catherine Nguyen & Denis Puthier, 2008. "TranscriptomeBrowser: A Powerful and Flexible Toolbox to Explore Productively the Transcriptional Landscape of the Gene Expression Omnibus Database," PLOS ONE, Public Library of Science, vol. 3(12), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miranda van Uitert & Perry D Moerland & Daniel A Enquobahrie & Hannele Laivuori & Joris A M van der Post & Carrie Ris-Stalpers & Gijs B Afink, 2015. "Meta-Analysis of Placental Transcriptome Data Identifies a Novel Molecular Pathway Related to Preeclampsia," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-15, July.
    2. Diego A Forero & Sandra Lopez-Leon & Yeimy González-Giraldo & Pantelis G Bagos, 2019. "Ten simple rules for carrying out and writing meta-analyses," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-7, May.
    3. Won Jun Lee & Sang Cheol Kim & Jung-Ho Yoon & Sang Jun Yoon & Johan Lim & You-Sun Kim & Sung Won Kwon & Jeong Hill Park, 2016. "Meta-Analysis of Tumor Stem-Like Breast Cancer Cells Using Gene Set and Network Analysis," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-20, February.
    4. Cheng-Wei Chang & Wei-Chung Cheng & Chaang-Ray Chen & Wun-Yi Shu & Min-Lung Tsai & Ching-Lung Huang & Ian C Hsu, 2011. "Identification of Human Housekeeping Genes and Tissue-Selective Genes by Microarray Meta-Analysis," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-10, July.
    5. Cherif Ben Hamda & Raphael Sangeda & Liberata Mwita & Ayton Meintjes & Siana Nkya & Sumir Panji & Nicola Mulder & Lamia Guizani-Tabbane & Alia Benkahla & Julie Makani & Kais Ghedira & H3ABioNet Consor, 2018. "A common molecular signature of patients with sickle cell disease revealed by microarray meta-analysis and a genome-wide association study," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-21, July.
    6. Zhiguang Huo & Li Zhu & Tianzhou Ma & Hongcheng Liu & Song Han & Daiqing Liao & Jinying Zhao & George Tseng, 2020. "Two-Way Horizontal and Vertical Omics Integration for Disease Subtype Discovery," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(1), pages 1-22, April.
    7. Atle van Beelen Granlund & Arnar Flatberg & Ann E Østvik & Ignat Drozdov & Bjørn I Gustafsson & Mark Kidd & Vidar Beisvag & Sverre H Torp & Helge L Waldum & Tom Christian Martinsen & Jan Kristian Damå, 2013. "Whole Genome Gene Expression Meta-Analysis of Inflammatory Bowel Disease Colon Mucosa Demonstrates Lack of Major Differences between Crohn's Disease and Ulcerative Colitis," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-14, February.
    8. Hao He & Shaolong Cao & Tianhua Niu & Yu Zhou & Lan Zhang & Yong Zeng & Wei Zhu & Yu-ping Wang & Hong-wen Deng, 2016. "Network-Based Meta-Analyses of Associations of Multiple Gene Expression Profiles with Bone Mineral Density Variations in Women," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-16, January.
    9. Peter Langfelder & Paul S Mischel & Steve Horvath, 2013. "When Is Hub Gene Selection Better than Standard Meta-Analysis?," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
    10. Wei-Chung Cheng & Cheng-Wei Chang & Chaang-Ray Chen & Min-Lung Tsai & Wun-Yi Shu & Chia-Yang Li & Ian C Hsu, 2011. "Identification of Reference Genes across Physiological States for qRT-PCR through Microarray Meta-Analysis," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-8, February.
    11. Claire Grills & Puthen V Jithesh & Jaine Blayney & Shu-Dong Zhang & Dean A Fennell, 2011. "Gene Expression Meta-Analysis Identifies VDAC1 as a Predictor of Poor Outcome in Early Stage Non-Small Cell Lung Cancer," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-8, January.
    12. Bidossessi Wilfried Hounkpe & Rafaela de Oliveira Benatti & Benilton de Sá Carvalho & Erich Vinicius De Paula, 2020. "Identification of common and divergent gene expression signatures in patients with venous and arterial thrombosis using data from public repositories," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-19, August.
    13. Hans-Juergen Schulten & Deema Hussein, 2019. "Array expression meta-analysis of cancer stem cell genes identifies upregulation of PODXL especially in DCC low expression meningiomas," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-20, May.
    14. Ram Bhupal Reddy & Anupama Rajan Bhat & Bonney Lee James & Sindhu Valiyaveedan Govindan & Rohit Mathew & Ravindra DR & Naveen Hedne & Jeyaram Illiayaraja & Vikram Kekatpure & Samanta S Khora & Wesley , 2016. "Meta-Analyses of Microarray Datasets Identifies ANO1 and FADD as Prognostic Markers of Head and Neck Cancer," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-21, January.
    15. Julie E. Goodman & Catherine Petito Boyce & Sonja N. Sax & Leslie A. Beyer & Robyn L. Prueitt, 2015. "Rethinking Meta‐Analysis: Applications for Air Pollution Data and Beyond," Risk Analysis, John Wiley & Sons, vol. 35(6), pages 1017-1039, June.
    16. Raihan K Uddin & Shiva M Singh, 2013. "Hippocampal Gene Expression Meta-Analysis Identifies Aging and Age-Associated Spatial Learning Impairment (ASLI) Genes and Pathways," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-16, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0026952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.