IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0026388.html
   My bibliography  Save this article

UV-Sensitive Photoreceptor Protein OPN5 in Humans and Mice

Author

Listed:
  • Daisuke Kojima
  • Suguru Mori
  • Masaki Torii
  • Akimori Wada
  • Rika Morishita
  • Yoshitaka Fukada

Abstract

A variety of animal species utilize the ultraviolet (UV) component of sunlight as their environmental cues, whereas physiological roles of UV photoreception in mammals, especially in human beings, remain open questions. Here we report that mouse neuropsin (OPN5) encoded by the Opn5 gene exhibited an absorption maximum (λmax) at 380 nm when reconstituted with 11-cis-retinal. Upon UV-light illumination, OPN5 was converted to a blue-absorbing photoproduct (λmax 470 nm), which was stable in the dark and reverted to the UV-absorbing state by the subsequent orange light illumination, indicating its bistable nature. Human OPN5 also had an absorption maximum at 380 nm with spectral properties similar to mouse OPN5, revealing that OPN5 is the first and hitherto unknown human opsin with peak sensitivity in the UV region. OPN5 was capable of activating heterotrimeric G protein Gi in a UV-dependent manner. Immuno-blotting analyses of mouse tissue extracts identified the retina, the brain and, unexpectedly, the outer ears as the major sites of OPN5 expression. In the tissue sections of mice, OPN5 immuno-reactivities were detected in a subset of non-rod/non-cone retinal neurons as well as in the epidermal and muscle cells of the outer ears. Most of these OPN5-immuno-reactivities in mice were co-localized with positive signals for the alpha-subunit of Gi. These results demonstrate the first example of UV photoreceptor in human beings and strongly suggest that OPN5 triggers a UV-sensitive Gi-mediated signaling pathway in the mammalian tissues.

Suggested Citation

  • Daisuke Kojima & Suguru Mori & Masaki Torii & Akimori Wada & Rika Morishita & Yoshitaka Fukada, 2011. "UV-Sensitive Photoreceptor Protein OPN5 in Humans and Mice," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-12, October.
  • Handle: RePEc:plo:pone00:0026388
    DOI: 10.1371/journal.pone.0026388
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0026388
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0026388&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0026388?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xudong Qiu & Tida Kumbalasiri & Stephanie M. Carlson & Kwoon Y. Wong & Vanitha Krishna & Ignacio Provencio & David M. Berson, 2005. "Induction of photosensitivity by heterologous expression of melanopsin," Nature, Nature, vol. 433(7027), pages 745-749, February.
    2. Violaine Jourdie & Benoît Moureau & Andrew T. D. Bennett & Philipp Heeb, 2004. "Ultraviolet reflectance by the skin of nestlings," Nature, Nature, vol. 431(7006), pages 262-262, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomohiro Sugihara & Takashi Nagata & Benjamin Mason & Mitsumasa Koyanagi & Akihisa Terakita, 2016. "Absorption Characteristics of Vertebrate Non-Visual Opsin, Opn3," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-15, August.
    2. Yusuke Nakane & Ai Shinomiya & Wataru Ota & Keisuke Ikegami & Tsuyoshi Shimmura & Sho-Ichi Higashi & Yasuhiro Kamei & Takashi Yoshimura, 2019. "Action spectrum for photoperiodic control of thyroid-stimulating hormone in Japanese quail (Coturnix japonica)," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-15, September.
    3. Ahmed Wagdi & Daniela Malan & Udhayabhaskar Sathyanarayanan & Janosch S. Beauchamp & Markus Vogt & David Zipf & Thomas Beiert & Berivan Mansuroglu & Vanessa Dusend & Mark Meininghaus & Linn Schneider , 2022. "Selective optogenetic control of Gq signaling using human Neuropsin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laurie J Mitchell & Fabio Cortesi & N Justin Marshall & Karen L Cheney, 2023. "Higher ultraviolet skin reflectance signals submissiveness in the anemonefish, Amphiprion akindynos," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(1), pages 19-32.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0026388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.