IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0024575.html
   My bibliography  Save this article

A Complete Solution for Dissecting Pure Main and Epistatic Effects of QTL in Triple Testcross Design

Author

Listed:
  • Xiao-Hong He
  • Yuan-Ming Zhang

Abstract

Epistasis plays an important role in genetics, evolution and crop breeding. To detect the epistasis, triple test cross (TTC) design had been developed several decades ago. Classical procedures for the TTC design use only linear transformations Z1, Z2 and Z3, calculated from the TTC family means of quantitative trait, to infer the nature of the collective additive, dominance and epistatic effects of all the genes. Although several quantitative trait loci (QTL) mapping approaches in the TTC design have been developed, these approaches do not provide a complete solution for dissecting pure main and epistatic effects. In this study, therefore, we developed a two-step approach to estimate all pure main and epistatic effects in the F2-based TTC design under the F2 and F∞ metric models. In the first step, with Z1 and Z2 the augmented main and epistatic effects in the full genetic model that simultaneously considered all putative QTL on the whole genome were estimated using empirical Bayes approach, and with Z3 three pure epistatic effects were obtained using two-dimensional genome scans. In the second step, the three pure epistatic effects obtained in the first step were integrated with the augmented epistatic and main effects for the further estimation of all other pure effects. A series of Monte Carlo simulation experiments has been carried out to confirm the proposed method. The results from simulation experiments show that: 1) the newly defined genetic parameters could be rightly identified with satisfactory statistical power and precision; 2) the F2-based TTC design was superior to the F2 and F2:3 designs; 3) with Z1 and Z2 the statistical powers for the detection of augmented epistatic effects were substantively affected by the signs of pure epistatic effects; and 4) with Z3 the estimation of pure epistatic effects required large sample size and family replication number. The extension of the proposed method in this study to other base populations was further discussed.

Suggested Citation

  • Xiao-Hong He & Yuan-Ming Zhang, 2011. "A Complete Solution for Dissecting Pure Main and Epistatic Effects of QTL in Triple Testcross Design," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-19, September.
  • Handle: RePEc:plo:pone00:0024575
    DOI: 10.1371/journal.pone.0024575
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0024575
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0024575&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0024575?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shizhong Xu, 2007. "An Empirical Bayes Method for Estimating Epistatic Effects of Quantitative Trait Loci," Biometrics, The International Biometric Society, vol. 63(2), pages 513-521, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueli Zhang & Congwei Sun & Zheng Zhang & Zhijun Dai & Yuan Chen & Xiong Yuan & Zheming Yuan & Wenbang Tang & Lanzhi Li & Zhongli Hu, 2017. "Genetic dissection of main and epistatic effects of QTL based on augmented triple test cross design," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simone Vincenzi & Marc Mangel & Alain J Crivelli & Stephan Munch & Hans J Skaug, 2014. "Determining Individual Variation in Growth and Its Implication for Life-History and Population Processes Using the Empirical Bayes Method," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-16, September.
    2. Hai-Yan Lü & Xiao-Fen Liu & Shi-Ping Wei & Yuan-Ming Zhang, 2011. "Epistatic Association Mapping in Homozygous Crop Cultivars," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-10, March.
    3. Gilmour, A.R., 2007. "Mixed model regression mapping for QTL detection in experimental crosses," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3749-3764, May.
    4. Liang Wang & Yulin Wang & Haomiao Cheng & Jilin Cheng, 2019. "Identifying the Driving Factors of Black Bloom in Lake Bay through Bayesian LASSO," IJERPH, MDPI, vol. 16(14), pages 1-14, July.
    5. Shriner, Daniel & Yi, Nengjun, 2009. "Deviance information criterion (DIC) in Bayesian multiple QTL mapping," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1850-1860, March.
    6. Frank Technow & Carlos D Messina & L Radu Totir & Mark Cooper, 2015. "Integrating Crop Growth Models with Whole Genome Prediction through Approximate Bayesian Computation," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-20, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0024575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.