IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0018380.html
   My bibliography  Save this article

Predicting Phenotypic Severity of Uncertain Gene Variants in the RET Proto-Oncogene

Author

Listed:
  • David K Crockett
  • Stephen R Piccolo
  • Perry G Ridge
  • Rebecca L Margraf
  • Elaine Lyon
  • Marc S Williams
  • Joyce A Mitchell

Abstract

Although reported gene variants in the RET oncogene have been directly associated with multiple endocrine neoplasia type 2 and hereditary medullary thyroid carcinoma, other mutations are classified as variants of uncertain significance (VUS) until the associated clinical phenotype is made clear. Currently, some 46 non-synonymous VUS entries exist in curated archives. In the absence of a gold standard method for predicting phenotype outcomes, this follow up study applies feature selected amino acid physical and chemical properties feeding a Bayes classifier to predict disease association of uncertain gene variants into categories of benign and pathogenic. Algorithm performance and VUS predictions were compared to established phylogenetic based mutation prediction algorithms. Curated outcomes and unpublished RET gene variants with known disease association were used to benchmark predictor performance. Reliable classification of RET uncertain gene variants will augment current clinical information of RET mutations and assist in improving prediction algorithms as knowledge increases.

Suggested Citation

  • David K Crockett & Stephen R Piccolo & Perry G Ridge & Rebecca L Margraf & Elaine Lyon & Marc S Williams & Joyce A Mitchell, 2011. "Predicting Phenotypic Severity of Uncertain Gene Variants in the RET Proto-Oncogene," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-7, March.
  • Handle: RePEc:plo:pone00:0018380
    DOI: 10.1371/journal.pone.0018380
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0018380
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0018380&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0018380?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Barbara E Engelhardt & Michael I Jordan & Kathryn E Muratore & Steven E Brenner, 2005. "Protein Molecular Function Prediction by Bayesian Phylogenomics," PLOS Computational Biology, Public Library of Science, vol. 1(5), pages 1-1, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nils Weinhold & Oliver Sander & Francisco S Domingues & Thomas Lengauer & Ingolf Sommer, 2008. "Local Function Conservation in Sequence and Structure Space," PLOS Computational Biology, Public Library of Science, vol. 4(7), pages 1-13, July.
    2. Jianzhu Ma & Sheng Wang & Zhiyong Wang & Jinbo Xu, 2014. "MRFalign: Protein Homology Detection through Alignment of Markov Random Fields," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-12, March.
    3. Adrian Schröder & Johannes Eichner & Jochen Supper & Jonas Eichner & Dierk Wanke & Carsten Henneges & Andreas Zell, 2010. "Predicting DNA-Binding Specificities of Eukaryotic Transcription Factors," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-15, November.
    4. Duncan P Brown & Nandini Krishnamurthy & Kimmen Sjölander, 2007. "Automated Protein Subfamily Identification and Classification," PLOS Computational Biology, Public Library of Science, vol. 3(8), pages 1-13, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0018380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.