Author
Listed:
- Ulf Schaefer
- Rimantas Kodzius
- Chikatoshi Kai
- Jun Kawai
- Piero Carninci
- Yoshihide Hayashizaki
- Vladimir B Bajic
Abstract
Background: Although transcription in mammalian genomes can initiate from various genomic positions (e.g., 3′UTR, coding exons, etc.), most locations on genomes are not prone to transcription initiation. It is of practical and theoretical interest to be able to estimate such collections of non-TSS locations (NTLs). The identification of large portions of NTLs can contribute to better focusing the search for TSS locations and thus contribute to promoter and gene finding. It can help in the assessment of 5′ completeness of expressed sequences, contribute to more successful experimental designs, as well as more accurate gene annotation. Methodology: Using comprehensive collections of Cap Analysis of Gene Expression (CAGE) and other transcript data from mouse and human genomes, we developed a methodology that allows us, by performing computational TSS prediction with very high sensitivity, to annotate, with a high accuracy in a strand specific manner, locations of mammalian genomes that are highly unlikely to harbor transcription start sites (TSSs). The properties of the immediate genomic neighborhood of 98,682 accurately determined mouse and 113,814 human TSSs are used to determine features that distinguish genomic transcription initiation locations from those that are not likely to initiate transcription. In our algorithm we utilize various constraining properties of features identified in the upstream and downstream regions around TSSs, as well as statistical analyses of these surrounding regions. Conclusions: Our analysis of human chromosomes 4, 21 and 22 estimates ∼46%, ∼41% and ∼27% of these chromosomes, respectively, as being NTLs. This suggests that on average more than 40% of the human genome can be expected to be highly unlikely to initiate transcription. Our method represents the first one that utilizes high-sensitivity TSS prediction to identify, with high accuracy, large portions of mammalian genomes as NTLs. The server with our algorithm implemented is available at http://cbrc.kaust.edu.sa/ddm/.
Suggested Citation
Ulf Schaefer & Rimantas Kodzius & Chikatoshi Kai & Jun Kawai & Piero Carninci & Yoshihide Hayashizaki & Vladimir B Bajic, 2010.
"High Sensitivity TSS Prediction: Estimates of Locations Where TSS Cannot Occur,"
PLOS ONE, Public Library of Science, vol. 5(11), pages 1-9, November.
Handle:
RePEc:plo:pone00:0013934
DOI: 10.1371/journal.pone.0013934
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0013934. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.