IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0011476.html
   My bibliography  Save this article

Gene Promoter Evolution Targets the Center of the Human Protein Interaction Network

Author

Listed:
  • Jordi Planas
  • Josep M Serrat

Abstract

Assessing the contribution of promoters and coding sequences to gene evolution is an important step toward discovering the major genetic determinants of human evolution. Many specific examples have revealed the evolutionary importance of cis-regulatory regions. However, the relative contribution of regulatory and coding regions to the evolutionary process and whether systemic factors differentially influence their evolution remains unclear. To address these questions, we carried out an analysis at the genome scale to identify signatures of positive selection in human proximal promoters. Next, we examined whether genes with positively selected promoters (Prom+ genes) show systemic differences with respect to a set of genes with positively selected protein-coding regions (Cod+ genes). We found that the number of genes in each set was not significantly different (8.1% and 8.5%, respectively). Furthermore, a functional analysis showed that, in both cases, positive selection affects almost all biological processes and only a few genes of each group are located in enriched categories, indicating that promoters and coding regions are not evolutionarily specialized with respect to gene function. On the other hand, we show that the topology of the human protein network has a different influence on the molecular evolution of proximal promoters and coding regions. Notably, Prom+ genes have an unexpectedly high centrality when compared with a reference distribution (P = 0.008, for Eigenvalue centrality). Moreover, the frequency of Prom+ genes increases from the periphery to the center of the protein network (P = 0.02, for the logistic regression coefficient). This means that gene centrality does not constrain the evolution of proximal promoters, unlike the case with coding regions, and further indicates that the evolution of proximal promoters is more efficient in the center of the protein network than in the periphery. These results show that proximal promoters have had a systemic contribution to human evolution by increasing the participation of central genes in the evolutionary process.

Suggested Citation

  • Jordi Planas & Josep M Serrat, 2010. "Gene Promoter Evolution Targets the Center of the Human Protein Interaction Network," PLOS ONE, Public Library of Science, vol. 5(7), pages 1-10, July.
  • Handle: RePEc:plo:pone00:0011476
    DOI: 10.1371/journal.pone.0011476
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0011476
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0011476&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0011476?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patricia J. Wittkopp & Belinda K. Haerum & Andrew G. Clark, 2004. "Evolutionary changes in cis and trans gene regulation," Nature, Nature, vol. 430(6995), pages 85-88, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jasper Panten & Tobias Heinen & Christina Ernst & Nils Eling & Rebecca E. Wagner & Maja Satorius & John C. Marioni & Oliver Stegle & Duncan T. Odom, 2024. "The dynamic genetic determinants of increased transcriptional divergence in spermatids," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Matthew I. M. Louder & Hannah Justen & Abigail A. Kimmitt & Koedi S. Lawley & Leslie M. Turner & J. David Dickman & Kira E. Delmore, 2024. "Gene regulation and speciation in a migratory divide between songbirds," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Jianping Quan & Ming Yang & Xingwang Wang & Gengyuan Cai & Rongrong Ding & Zhanwei Zhuang & Shenping Zhou & Suxu Tan & Donglin Ruan & Jiajin Wu & Enqin Zheng & Zebin Zhang & Langqing Liu & Fanming Men, 2024. "Multi-omic characterization of allele-specific regulatory variation in hybrid pigs," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0011476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.