IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0011207.html
   My bibliography  Save this article

Dynamics of the Drosophila Circadian Clock: Theoretical Anti-Jitter Network and Controlled Chaos

Author

Listed:
  • Hassan M Fathallah-Shaykh

Abstract

Background: Electronic clocks exhibit undesirable jitter or time variations in periodic signals. The circadian clocks of humans, some animals, and plants consist of oscillating molecular networks with peak-to-peak time of approximately 24 hours. Clockwork orange (CWO) is a transcriptional repressor of Drosophila direct target genes. Methodology/Principal Findings: Theory and data from a model of the Drosophila circadian clock support the idea that CWO controls anti-jitter negative circuits that stabilize peak-to-peak time in light-dark cycles (LD). The orbit is confined to chaotic attractors in both LD and dark cycles and is almost periodic in LD; furthermore, CWO diminishes the Euclidean dimension of the chaotic attractor in LD. Light resets the clock each day by restricting each molecular peak to the proximity of a prescribed time. Conclusions/Significance: The theoretical results suggest that chaos plays a central role in the dynamics of the Drosophila circadian clock and that a single molecule, CWO, may sense jitter and repress it by its negative loops.

Suggested Citation

  • Hassan M Fathallah-Shaykh, 2010. "Dynamics of the Drosophila Circadian Clock: Theoretical Anti-Jitter Network and Controlled Chaos," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-7, October.
  • Handle: RePEc:plo:pone00:0011207
    DOI: 10.1371/journal.pone.0011207
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0011207
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0011207&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0011207?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sato Honma & Takeshi Kawamoto & Yumiko Takagi & Katsumi Fujimoto & Fuyuki Sato & Mitsuhide Noshiro & Yukio Kato & Ken-ichi Honma, 2002. "Dec1 and Dec2 are regulators of the mammalian molecular clock," Nature, Nature, vol. 419(6909), pages 841-844, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao A. Duong & Kenkichi Baba & Jason P. DeBruyne & Alec J. Davidson & Christopher Ehlen & Michael Powell & Gianluca Tosini, 2024. "Environmental circadian disruption re-writes liver circadian proteomes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Lasse K. Markussen & Elizabeth A. Rondini & Olivia Sveidahl Johansen & Jesper G. S. Madsen & Elahu G. Sustarsic & Ann-Britt Marcher & Jacob B. Hansen & Zachary Gerhart-Hines & James G. Granneman & Sus, 2022. "Lipolysis regulates major transcriptional programs in brown adipocytes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Patty C Kandalepas & Jennifer W Mitchell & Martha U Gillette, 2016. "Melatonin Signal Transduction Pathways Require E-Box-Mediated Transcription of Per1 and Per2 to Reset the SCN Clock at Dusk," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-18, June.
    4. Anna Podleśny-Drabiniok & Gloriia Novikova & Yiyuan Liu & Josefine Dunst & Rose Temizer & Chiara Giannarelli & Samuele Marro & Taras Kreslavsky & Edoardo Marcora & Alison Mary Goate, 2024. "BHLHE40/41 regulate microglia and peripheral macrophage responses associated with Alzheimer’s disease and other disorders of lipid-rich tissues," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0011207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.