IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0007992.html
   My bibliography  Save this article

Scalable Steady State Analysis of Boolean Biological Regulatory Networks

Author

Listed:
  • Ferhat Ay
  • Fei Xu
  • Tamer Kahveci

Abstract

Background: Computing the long term behavior of regulatory and signaling networks is critical in understanding how biological functions take place in organisms. Steady states of these networks determine the activity levels of individual entities in the long run. Identifying all the steady states of these networks is difficult due to the state space explosion problem. Methodology: In this paper, we propose a method for identifying all the steady states of Boolean regulatory and signaling networks accurately and efficiently. We build a mathematical model that allows pruning a large portion of the state space quickly without causing any false dismissals. For the remaining state space, which is typically very small compared to the whole state space, we develop a randomized traversal method that extracts the steady states. We estimate the number of steady states, and the expected behavior of individual genes and gene pairs in steady states in an online fashion. Also, we formulate a stopping criterion that terminates the traversal as soon as user supplied percentage of the results are returned with high confidence. Conclusions: This method identifies the observed steady states of boolean biological networks computationally. Our algorithm successfully reported the G1 phases of both budding and fission yeast cell cycles. Besides, the experiments suggest that this method is useful in identifying co-expressed genes as well. By analyzing the steady state profile of Hedgehog network, we were able to find the highly co-expressed gene pair GL1-SMO together with other such pairs. Availability: Source code of this work is available at http://bioinformatics.cise.ufl.edu/palSteady.html twocolumnfalse]

Suggested Citation

  • Ferhat Ay & Fei Xu & Tamer Kahveci, 2009. "Scalable Steady State Analysis of Boolean Biological Regulatory Networks," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-9, December.
  • Handle: RePEc:plo:pone00:0007992
    DOI: 10.1371/journal.pone.0007992
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0007992
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0007992&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0007992?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Das Mouli & Murthy Chivukula A. & De Rajat K., 2014. "Second order optimization for the inference of gene regulatory pathways," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(1), pages 19-33, February.
    2. Stefan Leye & Roland Ewald & Adelinde M Uhrmacher, 2014. "Composing Problem Solvers for Simulation Experimentation: A Case Study on Steady State Estimation," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-13, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0007992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.