IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0006544.html
   My bibliography  Save this article

The Dynamic Interest in Topics within the Biomedical Scientific Community

Author

Listed:
  • Frederic Michon
  • Mark Tummers

Abstract

The increase in the size of the scientific community created an explosion in scientific production. We have analyzed the dynamics of biomedical scientific output during 1957–2007 by applying a bibliometric analysis of the PubMed database using different keywords representing specific biomedical topics. With the assumption that increased scientific interest will result in increased scientific output, we compared the output of specific topics to that of all scientific output. This analysis resulted in three broad categories of topics; those that follow the general trend of all scientific output, those that show highly variable output, and attractive topics which are new and grow explosively. The analysis of the citation impact of the scientific output resulted in a typical longtail distribution: the majority of journals and articles are of very low impact. This distribution has remained unchanged since 1957, although the interests of scientists must have shifted in this period. We therefore analyzed the distribution of articles in top journals and lower impact journals over time for the attractive topics. Novelty is rewarded by publication in top journals. Over time more articles are published in low impact journals progressively creating the longtail distribution, signifying acceptance of the topic by the community. There can be a gap of years between novelty and acceptance. Within topics temporary novelty is created with new subtopics. In conclusion, the longtail distribution is the foundation of the scientific output of the scientific community and can be used to examine different aspects of science practice.

Suggested Citation

  • Frederic Michon & Mark Tummers, 2009. "The Dynamic Interest in Topics within the Biomedical Scientific Community," PLOS ONE, Public Library of Science, vol. 4(8), pages 1-11, August.
  • Handle: RePEc:plo:pone00:0006544
    DOI: 10.1371/journal.pone.0006544
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0006544
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0006544&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0006544?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benoît Godin, 2006. "On the origins of bibliometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(1), pages 109-133, July.
    2. M. F. Perutz, 1999. "Will biomedicine outgrow support?," Nature, Nature, vol. 399(6734), pages 299-301, May.
    3. Erik Postma, 2007. "Inflated Impact Factors? The True Impact of Evolutionary Papers in Non-Evolutionary Journals," PLOS ONE, Public Library of Science, vol. 2(10), pages 1-5, October.
    4. Dag W Aksnes, 2003. "Characteristics of highly cited papers," Research Evaluation, Oxford University Press, vol. 12(3), pages 159-170, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ronan W Glynn & Ji Z Chin & Michael J Kerin & Karl J Sweeney, 2010. "Representation of Cancer in the Medical Literature - A Bibliometric Analysis," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-8, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    2. Daniel Torres-Salinas & Nicolás Robinson-García & Álvaro Cabezas-Clavijo & Evaristo Jiménez-Contreras, 2014. "Analyzing the citation characteristics of books: edited books, book series and publisher types in the book citation index," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 2113-2127, March.
    3. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    4. Quan-Hoang Vuong & Huyen Thanh T. Nguyen & Thanh-Hang Pham & Manh-Toan Ho & Minh-Hoang Nguyen, 2021. "Assessing the ideological homogeneity in entrepreneurial finance research by highly cited publications," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-11, December.
    5. Shuangqing Sheng & Wei Song & Hua Lian & Lei Ning, 2022. "Review of Urban Land Management Based on Bibliometrics," Land, MDPI, vol. 11(11), pages 1-25, November.
    6. Tamara Krajna & Jelka Petrak, 2019. "Croatian Highly Cited Papers," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 17(3-B), pages 684-696.
    7. Gianfranco Carotenuto & Francesca Nicolais, 2023. "One Secret for a High Citation Rate," Publications, MDPI, vol. 11(2), pages 1-3, April.
    8. Andrés Marroquín & Julio H. Cole, 2015. "Economical writing (or, “Think Hemingway”)," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 251-259, April.
    9. Yves Gingras & Mahdi Khelfaoui, 2018. "Assessing the effect of the United States’ “citation advantage” on other countries’ scientific impact as measured in the Web of Science (WoS) database," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 517-532, February.
    10. Jeffrey Demaine, 2022. "Fractionalization of research impact reveals global trends in university collaboration," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2235-2247, May.
    11. Kong, Ling & Wang, Dongbo, 2020. "Comparison of citations and attention of cover and non-cover papers," Journal of Informetrics, Elsevier, vol. 14(4).
    12. Dragan Ivanović & Miloš Jovanović & Frank Fritsche, 2016. "Analysis of scientific productivity and cooperation in the republics of former Yugoslavia before, during and after the Yugoslav wars," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 499-519, May.
    13. Schreiber, Michael, 2013. "A case study of the arbitrariness of the h-index and the highly-cited-publications indicator," Journal of Informetrics, Elsevier, vol. 7(2), pages 379-387.
    14. Peter Sjögårde & Fereshteh Didegah, 2022. "The association between topic growth and citation impact of research publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1903-1921, April.
    15. Nobuko Miyairi & Han-Wen Chang, 2012. "Bibliometric characteristics of highly cited papers from Taiwan, 2000–2009," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(1), pages 197-205, July.
    16. Kurubaran Ganasegeran & Chee Peng Hor & Mohd Fadzly Amar Jamil & Purnima Devi Suppiah & Juliana Mohd Noor & Norshahida Abdul Hamid & Deik Roy Chuan & Mohd Rizal Abdul Manaf & Alan Swee Hock Ch’ng & Ir, 2021. "Mapping the Scientific Landscape of Diabetes Research in Malaysia (2000–2018): A Systematic Scientometrics Study," IJERPH, MDPI, vol. 18(1), pages 1-20, January.
    17. Battiston, Pietro & Sacco, Pier Luigi & Stanca, Luca, 2022. "Cover effects on citations uncovered: Evidence from Nature," Journal of Informetrics, Elsevier, vol. 16(2).
    18. Ana María Gómez-Aguayo & Joaquín M. Azagra-Caro & Carlos Benito-Amat, 2024. "The steady effect of knowledge co-creation with universities on business scientific impact throughout the economic cycle," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(5), pages 2771-2799, May.
    19. Hui-Zhen Fu & Yuh-Shan Ho, 2013. "Comparison of independent research of China’s top universities using bibliometric indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 259-276, July.
    20. Chakraborty, Joyita & Pradhan, Dinesh K. & Nandi, Subrata, 2024. "A multiple k-means cluster ensemble framework for clustering citation trajectories," Journal of Informetrics, Elsevier, vol. 18(2).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0006544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.