IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0003689.html
   My bibliography  Save this article

Visual Cells Remember Earlier Applied Target: Plasticity of Orientation Selectivity

Author

Listed:
  • Narcis Ghisovan
  • Abdellatif Nemri
  • Svetlana Shumikhina
  • Stephane Molotchnikoff

Abstract

Background: A canonical proposition states that, in mature brain, neurons responsive to sensory stimuli are tuned to specific properties installed shortly after birth. It is amply demonstrated that that neurons in adult visual cortex of cats are orientation-selective that is they respond with the highest firing rates to preferred oriented stimuli. Methodology/Principal Findings: In anesthetized cats, prepared in a conventional fashion for single cell recordings, the present investigation shows that presenting a stimulus uninterruptedly at a non-preferred orientation for twelve minutes induces changes in orientation preference. Across all conditions orientation tuning curves were investigated using a trial by trial method. Contrary to what has been previously reported with shorter adaptation duration, twelve minutes of adaptation induces mostly attractive shifts, i.e. toward the adapter. After a recovery period allowing neurons to restore their original orientation tuning curves, we carried out a second adaptation which produced three major results: (1) more frequent attractive shifts, (2) an increase of their magnitude, and (3) an additional enhancement of responses at the new or acquired preferred orientation. Additionally, we also show that the direction of shifts depends on the duration of the adaptation: shorter adaptation in most cases produces repulsive shifts, whereas adaptation exceeding nine minutes results in attractive shifts, in the same unit. Consequently, shifts in preferred orientation depend on the duration of adaptation. Conclusion/Significance: The supplementary response improvements indicate that neurons in area 17 keep a memory trace of the previous stimulus properties, thereby upgrading cellular performance. It also highlights the dynamic nature of basic neuronal properties in adult cortex since repeated adaptations modified both the orientation tuning selectivity and the response strength to the preferred orientation. These enhanced neuronal responses suggest that the range of neuronal plasticity available to the visual system is broader than anticipated.

Suggested Citation

  • Narcis Ghisovan & Abdellatif Nemri & Svetlana Shumikhina & Stephane Molotchnikoff, 2008. "Visual Cells Remember Earlier Applied Target: Plasticity of Orientation Selectivity," PLOS ONE, Public Library of Science, vol. 3(11), pages 1-10, November.
  • Handle: RePEc:plo:pone00:0003689
    DOI: 10.1371/journal.pone.0003689
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003689
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0003689&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0003689?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Valentin Dragoi & Casto Rivadulla & Mriganka Sur, 2001. "Foci of orientation plasticity in visual cortex," Nature, Nature, vol. 411(6833), pages 80-86, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeyadarshan Jeyabalaratnam & Vishal Bharmauria & Lyes Bachatene & Sarah Cattan & Annie Angers & Stéphane Molotchnikoff, 2013. "Adaptation Shifts Preferred Orientation of Tuning Curve in the Mouse Visual Cortex," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-8, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sunny Nigam & Russell Milton & Sorin Pojoga & Valentin Dragoi, 2023. "Adaptive coding across visual features during free-viewing and fixation conditions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Jeyadarshan Jeyabalaratnam & Vishal Bharmauria & Lyes Bachatene & Sarah Cattan & Annie Angers & Stéphane Molotchnikoff, 2013. "Adaptation Shifts Preferred Orientation of Tuning Curve in the Mouse Visual Cortex," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-8, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0003689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.