IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0003205.html
   My bibliography  Save this article

A Seriation Approach for Visualization-Driven Discovery of Co-Expression Patterns in Serial Analysis of Gene Expression (SAGE) Data

Author

Listed:
  • Olena Morozova
  • Vyacheslav Morozov
  • Brad G Hoffman
  • Cheryl D Helgason
  • Marco A Marra

Abstract

Background: Serial Analysis of Gene Expression (SAGE) is a DNA sequencing-based method for large-scale gene expression profiling that provides an alternative to microarray analysis. Most analyses of SAGE data aimed at identifying co-expressed genes have been accomplished using various versions of clustering approaches that often result in a number of false positives. Principal Findings: Here we explore the use of seriation, a statistical approach for ordering sets of objects based on their similarity, for large-scale expression pattern discovery in SAGE data. For this specific task we implement a seriation heuristic we term ‘progressive construction of contigs’ that constructs local chains of related elements by sequentially rearranging margins of the correlation matrix. We apply the heuristic to the analysis of simulated and experimental SAGE data and compare our results to those obtained with a clustering algorithm developed specifically for SAGE data. We show using simulations that the performance of seriation compares favorably to that of the clustering algorithm on noisy SAGE data. Conclusions: We explore the use of a seriation approach for visualization-based pattern discovery in SAGE data. Using both simulations and experimental data, we demonstrate that seriation is able to identify groups of co-expressed genes more accurately than a clustering algorithm developed specifically for SAGE data. Our results suggest that seriation is a useful method for the analysis of gene expression data whose applicability should be further pursued.

Suggested Citation

  • Olena Morozova & Vyacheslav Morozov & Brad G Hoffman & Cheryl D Helgason & Marco A Marra, 2008. "A Seriation Approach for Visualization-Driven Discovery of Co-Expression Patterns in Serial Analysis of Gene Expression (SAGE) Data," PLOS ONE, Public Library of Science, vol. 3(9), pages 1-11, September.
  • Handle: RePEc:plo:pone00:0003205
    DOI: 10.1371/journal.pone.0003205
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003205
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0003205&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0003205?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kai Puolamäki & Mikael Fortelius & Heikki Mannila, 2006. "Seriation in Paleontological Data Using Markov Chain Monte Carlo Methods," PLOS Computational Biology, Public Library of Science, vol. 2(2), pages 1-9, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arcagni, Alberto & Avellone, Alessandro & Fattore, Marco, 2022. "Complexity reduction and approximation of multidomain systems of partially ordered data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    2. Javier Alcaraz & Eva M. García-Nové & Mercedes Landete & Juan F. Monge, 2020. "The linear ordering problem with clusters: a new partial ranking," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 646-671, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0003205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.