IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0002449.html
   My bibliography  Save this article

Complex Cooperative Networks from Evolutionary Preferential Attachment

Author

Listed:
  • Julia Poncela
  • Jesús Gómez-Gardeñes
  • Luis M Floría
  • Angel Sánchez
  • Yamir Moreno

Abstract

In spite of its relevance to the origin of complex networks, the interplay between form and function and its role during network formation remains largely unexplored. While recent studies introduce dynamics by considering rewiring processes of a pre-existent network, we study network growth and formation by proposing an evolutionary preferential attachment model, its main feature being that the capacity of a node to attract new links depends on a dynamical variable governed in turn by the node interactions. As a specific example, we focus on the problem of the emergence of cooperation by analyzing the formation of a social network with interactions given by the Prisoner's Dilemma. The resulting networks show many features of real systems, such as scale-free degree distributions, cooperative behavior and hierarchical clustering. Interestingly, results such as the cooperators being located mostly on nodes of intermediate degree are very different from the observations of cooperative behavior on static networks. The evolutionary preferential attachment mechanism points to an evolutionary origin of scale-free networks and may help understand similar feedback problems in the dynamics of complex networks by appropriately choosing the game describing the interaction of nodes.

Suggested Citation

  • Julia Poncela & Jesús Gómez-Gardeñes & Luis M Floría & Angel Sánchez & Yamir Moreno, 2008. "Complex Cooperative Networks from Evolutionary Preferential Attachment," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-6, June.
  • Handle: RePEc:plo:pone00:0002449
    DOI: 10.1371/journal.pone.0002449
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002449
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0002449&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0002449?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erez Lieberman & Christoph Hauert & Martin A. Nowak, 2005. "Evolutionary dynamics on graphs," Nature, Nature, vol. 433(7023), pages 312-316, January.
    2. Hisashi Ohtsuki & Christoph Hauert & Erez Lieberman & Martin A. Nowak, 2006. "A simple rule for the evolution of cooperation on graphs and social networks," Nature, Nature, vol. 441(7092), pages 502-505, May.
    3. Francisco C Santos & Jorge M Pacheco & Tom Lenaerts, 2006. "Cooperation Prevails When Individuals Adjust Their Social Ties," PLOS Computational Biology, Public Library of Science, vol. 2(10), pages 1-8, October.
    4. Sergi Lozano & Alex Arenas & Angel Sánchez, 2008. "Mesoscopic Structure Conditions the Emergence of Cooperation on Social Networks," PLOS ONE, Public Library of Science, vol. 3(4), pages 1-9, April.
    5. Sergi Lozano & Alexandre Arenas, 2007. "A Model to Test How Diversity Affects Resilience in Regional Innovation Networks," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(4), pages 1-8.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongkui Liu & Xiaojie Chen & Lin Zhang & Long Wang & Matjaž Perc, 2012. "Win-Stay-Lose-Learn Promotes Cooperation in the Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    2. Li, Gang & Sun, Xiaochen, 2021. "Evolutionary game on a growing multilayer network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    3. Zhang, Jianlei & Zhang, Chunyan & Chu, Tianguang, 2011. "The evolution of cooperation in spatial groups," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 131-136.
    4. Keizo Shigaki & Zhen Wang & Jun Tanimoto & Eriko Fukuda, 2013. "Effect of Initial Fraction of Cooperators on Cooperative Behavior in Evolutionary Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-7, November.
    5. Jianlei Zhang & Chunyan Zhang & Tianguang Chu & Matjaž Perc, 2011. "Resolution of the Stochastic Strategy Spatial Prisoner's Dilemma by Means of Particle Swarm Optimization," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-7, July.
    6. Wang, Lei & Xia, Chengyi & Wang, Li & Zhang, Ying, 2013. "An evolving Stag-Hunt game with elimination and reproduction on regular lattices," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 69-76.
    7. Chunyan Zhang & Jianlei Zhang & Guangming Xie & Long Wang & Matjaž Perc, 2011. "Evolution of Interactions and Cooperation in the Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-7, October.
    8. Reyns, Ariane, 2024. "What drives businesses to transact with complementary currencies?," Ecological Economics, Elsevier, vol. 220(C).
    9. Pan, Qiuhui & Shi, Shu & Zhang, Yu & He, Mingfeng, 2013. "Cooperation in spatial prisoner’s dilemma game with delayed decisions," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 166-174.
    10. Jiawei Li & Graham Kendall, 2015. "On Nash Equilibrium and Evolutionarily Stable States That Are Not Characterised by the Folk Theorem," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-9, August.
    11. Wang, Lei & Wang, Juan & Guo, Baohong & Ding, Shuai & Li, Yukun & Xia, Chengyi, 2014. "Effects of benefit-inspired network coevolution on spatial reciprocity in the prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 66(C), pages 9-16.
    12. Scatà, Marialisa & Di Stefano, Alessandro & La Corte, Aurelio & Liò, Pietro & Catania, Emanuele & Guardo, Ermanno & Pagano, Salvatore, 2016. "Combining evolutionary game theory and network theory to analyze human cooperation patterns," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 17-24.
    13. Niu, Zhenxi & Xu, Jiwei & Dai, Dameng & Liang, Tairan & Mao, Deming & Zhao, Dawei, 2018. "Rational conformity behavior can promote cooperation in the prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 92-96.
    14. Xiaojie Chen & Yongkui Liu & Yonghui Zhou & Long Wang & Matjaž Perc, 2012. "Adaptive and Bounded Investment Returns Promote Cooperation in Spatial Public Goods Games," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-8, May.
    15. Matjaž Perc & Zhen Wang, 2010. "Heterogeneous Aspirations Promote Cooperation in the Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-8, December.
    16. Luciano Miranda & Adauto J F de Souza & Fernando F Ferreira & Paulo R A Campos, 2012. "Complex Transition to Cooperative Behavior in a Structured Population Model," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-9, June.
    17. Zhang, Xin-Jie & Tang, Yong & Xiong, Jason & Wang, Wei-Jia & Zhang, Yi-Cheng, 2020. "Ranking game on networks: The evolution of hierarchical society," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    18. Alberto Antonioni & Marco Tomassini, 2011. "Network Fluctuations Hinder Cooperation in Evolutionary Games," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-9, October.
    19. Alessandro Di Stefano & Marialisa Scatà & Aurelio La Corte & Pietro Liò & Emanuele Catania & Ermanno Guardo & Salvatore Pagano, 2015. "Quantifying the Role of Homophily in Human Cooperation Using Multiplex Evolutionary Game Theory," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-21, October.
    20. Wang, Xianjia & Ding, Rui & Zhao, Jinhua & Gu, Cuiling, 2022. "The rise and fall of cooperation in populations with multiple groups," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    21. Song, Fanpeng & Wu, Jianliang & Fan, Suohai & Jing, Fei, 2020. "Transcendental behavior and disturbance behavior favor human development," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    22. Li, Gang & Jin, Xiao-Gang & Song, Zhi-Huan, 2012. "Evolutionary game on a stochastic growth network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6664-6673.
    23. Carlos P Roca & Sergi Lozano & Alex Arenas & Angel Sánchez, 2010. "Topological Traps Control Flow on Real Networks: The Case of Coordination Failures," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-9, December.
    24. Yuhui, Qiu & Tianyang, Lv & Xizhe, Zhang & Honghua, Hu & Yuanchi, Ma, 2024. "Cooperation emerged and survived in scale-free networks in co-evolution and betrayer-prevailing circumstances," Applied Mathematics and Computation, Elsevier, vol. 473(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Faqi & Fu, Feng, 2013. "Quantifying the impact of noise on macroscopic organization of cooperation in spatial games," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 35-44.
    2. Faqi Du & Feng Fu, 2011. "Partner Selection Shapes the Strategic and Topological Evolution of Cooperation," Dynamic Games and Applications, Springer, vol. 1(3), pages 354-369, September.
    3. Zhang, Hui & Zhang, Feng & Li, Zizhen & Gao, Meng & Li, Wenlong, 2009. "Evolutionary diversity and spatiotemporal dynamics of a spatial game," Ecological Modelling, Elsevier, vol. 220(19), pages 2353-2364.
    4. Konno, Tomohiko, 2013. "An imperfect competition on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5453-5460.
    5. Zhang, Jianlei & Zhang, Chunyan & Chu, Tianguang, 2011. "The evolution of cooperation in spatial groups," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 131-136.
    6. R. Bentley & Michael O’Brien & Paul Ormerod, 2011. "Quality versus mere popularity: a conceptual map for understanding human behavior," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 10(2), pages 181-191, December.
    7. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    8. Michael Foley & Rory Smead & Patrick Forber & Christoph Riedl, 2021. "Avoiding the bullies: The resilience of cooperation among unequals," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-18, April.
    9. Tanimoto, Jun, 2009. "Promotion of cooperation through co-evolution of networks and strategy in a 2 × 2 game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 953-960.
    10. Benjamin Allen & Christine Sample & Robert Jencks & James Withers & Patricia Steinhagen & Lori Brizuela & Joshua Kolodny & Darren Parke & Gabor Lippner & Yulia A Dementieva, 2020. "Transient amplifiers of selection and reducers of fixation for death-Birth updating on graphs," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-20, January.
    11. Zhang, Hui & Wang, Li & Hou, Dongshuang, 2016. "Effect of the spatial autocorrelation of empty sites on the evolution of cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 296-308.
    12. Wakano, Joe Yuichiro & Ohtsuki, Hisashi & Kobayashi, Yutaka, 2013. "A mathematical description of the inclusive fitness theory," Theoretical Population Biology, Elsevier, vol. 84(C), pages 46-55.
    13. Pan, Qiuhui & Shi, Shu & Zhang, Yu & He, Mingfeng, 2013. "Cooperation in spatial prisoner’s dilemma game with delayed decisions," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 166-174.
    14. Wang, Jianwei & Xu, Wenshu & Yu, Fengyuan & He, Jialu & Chen, Wei & Dai, Wenhui, 2024. "Evolution of cooperation under corrupt institutions," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    15. McAvoy, Alex & Fraiman, Nicolas & Hauert, Christoph & Wakeley, John & Nowak, Martin A., 2018. "Public goods games in populations with fluctuating size," Theoretical Population Biology, Elsevier, vol. 121(C), pages 72-84.
    16. Qiguang An & Hongfeng Guo & Yating Zheng, 2022. "On Robust Stability and Stabilization of Networked Evolutionary Games with Time Delays," Mathematics, MDPI, vol. 10(15), pages 1-12, July.
    17. Pi, Jinxiu & Wang, Chun & Zhou, Die & Tang, Wei & Yang, Guanghui, 2024. "Evolutionary dynamics of N-person snowdrift game with two thresholds in well-mixed and structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    18. Liu, Xuesong & Pan, Qiuhui & He, Mingfeng & Liu, Aizhi, 2019. "Promotion of cooperation in evolutionary game dynamics under asymmetric information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 258-266.
    19. Alexander J. Stewart & Joshua B. Plotkin, 2015. "The Evolvability of Cooperation under Local and Non-Local Mutations," Games, MDPI, vol. 6(3), pages 1-20, July.
    20. Benjamin Allen & Christine Sample & Yulia Dementieva & Ruben C Medeiros & Christopher Paoletti & Martin A Nowak, 2015. "The Molecular Clock of Neutral Evolution Can Be Accelerated or Slowed by Asymmetric Spatial Structure," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-32, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0002449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.