IDEAS home Printed from https://ideas.repec.org/a/plo/pntd00/0010016.html
   My bibliography  Save this article

A systematic review and meta-analysis of the potential non-human animal reservoirs and arthropod vectors of the Mayaro virus

Author

Listed:
  • Michael Celone
  • Bernard Okech
  • Barbara A Han
  • Brett M Forshey
  • Assaf Anyamba
  • James Dunford
  • George Rutherford
  • Neida Karen Mita-Mendoza
  • Elizabet Lilia Estallo
  • Ricardo Khouri
  • Isadora Cristina de Siqueira
  • Simon Pollett

Abstract

Improving our understanding of Mayaro virus (MAYV) ecology is critical to guide surveillance and risk assessment. We conducted a PRISMA-adherent systematic review of the published and grey literature to identify potential arthropod vectors and non-human animal reservoirs of MAYV. We searched PubMed/MEDLINE, Embase, Web of Science, SciELO and grey-literature sources including PAHO databases and dissertation repositories. Studies were included if they assessed MAYV virological/immunological measured occurrence in field-caught, domestic, or sentinel animals or in field-caught arthropods. We conducted an animal seroprevalence meta-analysis using a random effects model. We compiled granular georeferenced maps of non-human MAYV occurrence and graded the quality of the studies using a customized framework. Overall, 57 studies were eligible out of 1523 screened, published between the years 1961 and 2020. Seventeen studies reported MAYV positivity in wild mammals, birds, or reptiles and five studies reported MAYV positivity in domestic animals. MAYV positivity was reported in 12 orders of wild-caught vertebrates, most frequently in the orders Charadriiformes and Primate. Sixteen studies detected MAYV in wild-caught mosquito genera including Haemagogus, Aedes, Culex, Psorophora, Coquillettidia, and Sabethes. Vertebrate animals or arthropods with MAYV were detected in Brazil, Panama, Peru, French Guiana, Colombia, Trinidad, Venezuela, Argentina, and Paraguay. Among non-human vertebrates, the Primate order had the highest pooled seroprevalence at 13.1% (95% CI: 4.3–25.1%). From the three most studied primate genera we found the highest seroprevalence was in Alouatta (32.2%, 95% CI: 0.0–79.2%), followed by Callithrix (17.8%, 95% CI: 8.6–28.5%), and Cebus/Sapajus (3.7%, 95% CI: 0.0–11.1%). We further found that MAYV occurs in a wide range of vectors beyond Haemagogus spp. The quality of evidence behind these findings was variable and prompts calls for standardization of reporting of arbovirus occurrence. These findings support further risk emergence prediction, guide field surveillance efforts, and prompt further in-vivo studies to better define the ecological drivers of MAYV maintenance and potential for emergence.Author summary: Mayaro virus (MAYV) is an emerging tropical public health threat in the Americas. We conducted a georeferenced, quality-graded systematic review to evaluate the current evidence regarding MAYV occurrence in non-human vertebrates and arthropods. Overall, 57 studies were eligible out of 1523 screened, published between the years 1961 and 2020. Seventeen studies reported MAYV positivity in wild mammals, birds, or reptiles and five studies reported MAYV positivity in domestic animals. MAYV positivity was reported in 12 orders of wild-caught vertebrates, most frequently in the orders Charadriiformes and Primate. Our systematic review identified 12 orders of wild-caught vertebrates and seven mosquito genera with evidence of MAYV occurrence. Primates had the highest pooled MAYV seroprevalence according to a seroprevalence meta-analysis. The graded quality of evidence behind these findings was variable and prompts calls for standardization of reporting of MAYV and perhaps other emerging arbovirus occurrence in animals and vectors. This study provides important information for public health authorities and disease ecologists concerned with the growing threat of MAYV in Latin America. Our analysis provides a foundation for future laboratory and field studies focused on the MAYV transmission cycle.

Suggested Citation

  • Michael Celone & Bernard Okech & Barbara A Han & Brett M Forshey & Assaf Anyamba & James Dunford & George Rutherford & Neida Karen Mita-Mendoza & Elizabet Lilia Estallo & Ricardo Khouri & Isadora Cris, 2021. "A systematic review and meta-analysis of the potential non-human animal reservoirs and arthropod vectors of the Mayaro virus," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 15(12), pages 1-34, December.
  • Handle: RePEc:plo:pntd00:0010016
    DOI: 10.1371/journal.pntd.0010016
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0010016
    Download Restriction: no

    File URL: https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0010016&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pntd.0010016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0010016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.