Author
Listed:
- Chathurangi Edussuriya
- Sampath Deegalla
- Indika Gawarammana
Abstract
Dengue fever is a systemic viral infection of epidemic proportions in tropical countries. The incidence of dengue fever is ever increasing and has doubled over the last few decades. Estimated 50million new cases are detected each year and close to 10000 deaths occur each year. Epidemics are unpredictable and unprecedented. When epidemics occur, health services are over whelmed leading to overcrowding of hospitals. At present there is no evidence that dengue epidemics can be predicted. Since the breeding of the dengue mosquito is directly influenced by environmental factors, it is plausible that epidemics could be predicted using weather data. We hypothesized that there is a mathematical relationship between incidence of dengue fever and environmental factors and if such relationship exists, new cases of dengue fever in the succeeding months can be predicted using weather data of the current month. We developed a mathematical model using machine learning technique. We used Island wide dengue epidemiology data, weather data and population density in developing the model. We used incidence of dengue fever, average rain fall, humidity, wind speed, temperature and population density of each district in the model. We found that the model is able to predict the incidence of dengue fever of a given month in a given district with precision (RMSE between 18- 35.3). Further, using weather data of a given month, the number of cases of dengue in succeeding months too can be predicted with precision (RMSE 10.4—30). Health authorities can use existing weather data in predicting epidemics in the immediate future and therefore measures to prevent new cases can be taken and more importantly the authorities can prepare local authorities for outbreaks.Author summary: Dengue fever is a systemic viral infection of epidemic proportions in tropical countries. The incidence of dengue fever is ever increasing and has doubled over the last few decades. Estimated 50 million new cases are detected each year and close to 10000 deaths occur each year. Epidemics are unpredictable and unprecedented. When epidemics occur, health services are over whelmed leading to overcrowding of hospitals. At present there is no evidence that dengue epidemics can be predicted. We developed a mathematical model using machine learning technique to predict dengue epidemics. We used Island wide dengue epidemiology data, weather data and population density in developing the model. We found that the model is able to predict the incidence of dengue fever of a given month in a given district with precision. Further, using weather data of a given month, the number of cases of dengue in succeeding months too can be predicted with precision. Health authorities can use existing weather data in predicting epidemics in the immediate future and therefore measures to prevent new cases can be taken and more importantly the authorities can prepare local authorities for outbreaks.
Suggested Citation
Chathurangi Edussuriya & Sampath Deegalla & Indika Gawarammana, 2021.
"An accurate mathematical model predicting number of dengue cases in tropics,"
PLOS Neglected Tropical Diseases, Public Library of Science, vol. 15(11), pages 1-15, November.
Handle:
RePEc:plo:pntd00:0009756
DOI: 10.1371/journal.pntd.0009756
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0009756. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.