Author
Listed:
- Vageesh Jain
- Andre Charlett
- Colin S Brown
Abstract
Introduction: One of the leading challenges in the 2013–2016 West African Ebola virus disease (EVD) outbreak was how best to quickly identify patients with EVD, separating them from those without the disease, in order to maximise limited isolation bed capacity and keep health systems functioning. Methodology: We performed a systematic literature review to identify all published data on EVD clinical symptoms in adult patients. Data was dual extracted, and random effects meta-analysis performed for each symptom to identify symptoms with the greatest risk for EVD infection. Results: Symptoms usually presenting late in illness that were more than twice as likely to predict a diagnosis of Ebola, were confusion (pOR 3.04, 95% CI 2.18–4.23), conjunctivitis (2.90, 1.92–4.38), dysphagia (1.95, 1.13–3.35) and jaundice (1.86, 1.20–2.88). Early non-specific symptoms of diarrhoea (2.99, 2.00–4.48), fatigue (2.77, 1.59–4.81), vomiting (2.69, 1.76–4.10), fever (1.97, 1.10–4.52), muscle pain (1.65, 1.04–2.61), and cough (1.63, 1.24–2.14), were also strongly associated with EVD diagnosis. Conclusions: The existing literature fails to provide a unified position on the symptoms most predictive of EVD, but highlights some early and late stage symptoms that in combination will be useful for future risk stratification. Confirmation of these findings across datasets (or ideally an aggregation of all individual patient data) will aid effective future clinical assessment, risk stratification tools and emergency epidemic response planning. Author summary: Ebola is a rare but deadly virus, found mainly in sub-Saharan Africa. People can get it through direct contact with an infected animal (bat or nonhuman primate) or a sick or dead person infected with Ebola virus. The virus can cause a host of different symptoms that overlap with many other diseases, making diagnosis a challenge for doctors, particularly with a lack of available rapid diagnostic tests or laboratory facilities.
Suggested Citation
Vageesh Jain & Andre Charlett & Colin S Brown, 2020.
"Meta-analysis of predictive symptoms for Ebola virus disease,"
PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(10), pages 1-15, October.
Handle:
RePEc:plo:pntd00:0008799
DOI: 10.1371/journal.pntd.0008799
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0008799. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.