Author
Listed:
- Wei Qian
- Elvina Viennet
- Kathryn Glass
- David Harley
Abstract
Ross River virus (RRV) is the most common and widespread arbovirus in Australia. Epidemiological models of RRV increase understanding of RRV transmission and help provide early warning of outbreaks to reduce incidence. However, RRV predictive models have not been systematically reviewed, analysed, and compared. The hypothesis of this systematic review was that summarising the epidemiological models applied to predict RRV disease and analysing model performance could elucidate drivers of RRV incidence and transmission patterns. We performed a systematic literature search in PubMed, EMBASE, Web of Science, Cochrane Library, and Scopus for studies of RRV using population-based data, incorporating at least one epidemiological model and analysing the association between exposures and RRV disease. Forty-three articles, all of high or medium quality, were included. Twenty-two (51.2%) used generalised linear models and 11 (25.6%) used time-series models. Climate and weather data were used in 27 (62.8%) and mosquito abundance or related data were used in 14 (32.6%) articles as model covariates. A total of 140 models were included across the articles. Rainfall (69 models, 49.3%), temperature (66, 47.1%) and tide height (45, 32.1%) were the three most commonly used exposures. Ten (23.3%) studies published data related to model performance. This review summarises current knowledge of RRV modelling and reveals a research gap in comparing predictive methods. To improve predictive accuracy, new methods for forecasting, such as non-linear mixed models and machine learning approaches, warrant investigation.Author summary: As the most common human arbovirus infection in Australia, Ross River virus exerts a significant public health and economic burden on the population. Because the virus is transmitted by mosquitoes, incidence is influenced by climate, environment, and socio-economic factors. Using epidemiological models to predict incidence or outbreaks of RRV fully utilises these data to inform decision-making. In this systematic review, we summarised models and their predictive performance, and highlighted significant exposures in order to increase understanding of transmission.
Suggested Citation
Wei Qian & Elvina Viennet & Kathryn Glass & David Harley, 2020.
"Epidemiological models for predicting Ross River virus in Australia: A systematic review,"
PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(9), pages 1-17, September.
Handle:
RePEc:plo:pntd00:0008621
DOI: 10.1371/journal.pntd.0008621
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0008621. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.