Machine learning and dengue forecasting: Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-national scales in Colombia
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pntd.0008056
Download full text from publisher
References listed on IDEAS
- Shalini Gambhir & Sanjay Kumar Malik & Yugal Kumar, 2018. "The Diagnosis of Dengue Disease: An Evaluation of Three Machine Learning Approaches," International Journal of Healthcare Information Systems and Informatics (IJHISI), IGI Global, vol. 13(3), pages 1-19, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mokhalad A. Majeed & Helmi Zulhaidi Mohd Shafri & Zed Zulkafli & Aimrun Wayayok, 2023. "A Deep Learning Approach for Dengue Fever Prediction in Malaysia Using LSTM with Spatial Attention," IJERPH, MDPI, vol. 20(5), pages 1-22, February.
- Villi Dane M. Go, 2023. "Communicable disease surveillance through predictive analysis: A comparative analysis of prediction models," HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE - ENGINEERING AND TECHNOLOGY, HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE, HO CHI MINH CITY OPEN UNIVERSITY, vol. 13(2), pages 45-54.
- Zhichao Li, 2022. "Forecasting Weekly Dengue Cases by Integrating Google Earth Engine-Based Risk Predictor Generation and Google Colab-Based Deep Learning Modeling in Fortaleza and the Federal District, Brazil," IJERPH, MDPI, vol. 19(20), pages 1-16, October.
- Panja, Madhurima & Chakraborty, Tanujit & Nadim, Sk Shahid & Ghosh, Indrajit & Kumar, Uttam & Liu, Nan, 2023. "An ensemble neural network approach to forecast Dengue outbreak based on climatic condition," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kai-Xiang Zhuang & I-Ching Hsu, 2020. "Knowledge Fusion Based on Cloud Computing Environment for Long-Term Care," International Journal of Healthcare Information Systems and Informatics (IJHISI), IGI Global, vol. 15(4), pages 38-55, October.
- Supreet Kaur & Sandeep Sharma & Ateeq Ur Rehman & Elsayed Tag Eldin & Nivin A. Ghamry & Muhammad Shafiq & Salil Bharany, 2022. "Predicting Infection Positivity, Risk Estimation, and Disease Prognosis in Dengue Infected Patients by ML Expert System," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0008056. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.