Author
Listed:
- Katharine A Owers
- Juliana Odetunde
- Rosan Barbosa de Matos
- Gielson Sacramento
- Mayara Carvalho
- Nivison Nery Jr
- Federico Costa
- Mitermayer G Reis
- James E Childs
- José E Hagan
- Peter J Diggle
- Albert I Ko
Abstract
Background: Human movement is likely an important risk factor for environmentally-transmitted pathogens. While epidemiologic studies have traditionally focused on household risk factors, individual movement data could provide critical additional information about risk of exposure to such pathogens. We conducted global positioning system (GPS) tracking of urban slum residents to quantify their fine-scale movement patterns and evaluate their exposures to environmental sources of leptospirosis transmission. Methodology/Principal findings: We recruited participants from an ongoing cohort study in an urban slum in Brazil and tracked them for 24 hours at 30-second intervals. Among 172 subjects asked to participate in this cross-sectional study, 130 agreed to participate and 109 had good quality data and were included in analyses. The majority of recorded locations were near participant residences (87.7% within 50 meters of the house), regardless of age or gender. Similarly, exposure to environmental sources of leptospirosis transmission did not vary by age or gender. However, males, who have higher infection rates, visited a significantly larger area during the 24-hour period than did females (34,549m2 versus 22,733m2, p = 0.005). Four male participants had serologic evidence of Leptospira infection during the study period. These individuals had significantly larger activity spaces than uninfected males (61,310m2 vs 31,575m2, p = 0.006) and elevated exposure to rodent activity (p = 0.046) and trash deposits (p = 0.031). Conclusions/Significance: GPS tracking was an effective tool for quantifying individual mobility in the complex urban slum environment and identifying risk exposures associated with that movement. This study suggests that in addition to source reduction, barrier interventions that reduce contact with transmission sources as slum residents move within their communities may be a useful prevention strategy for leptospirosis. Author summary: Environmental features of urban slums including inadequate sanitation, substandard housing, and population crowding predispose residents to numerous infections. Despite this shared environment, not all slum residents, even within households, have equal risk of infection with specific pathogens and we do not know why. Individual movement data will help us better understand how slum residents interact with their environment. We conducted GPS tracking of 109 urban slum residents in Brazil to quantify their movement patterns and how these influence exposure to leptospirosis, an environmentally transmitted infection common in urban slums. Slum inhabitants, regardless of age and gender, spent most of their time close to home and had similar exposures to environmental features associated with leptospirosis infection. However, males visited a larger area on a daily basis, which may explain their higher leptospirosis risk. Based on screening of the slum population conducted at six-month intervals, four individuals (all male) became infected with Leptospira during our study. These individuals visited a significantly larger area than other males and had higher exposure to rodents and trash deposits than did other participants. GPS tracking allowed us to identify movement and movement-induced exposure as risk factors for leptospirosis infection and could provide similarly important information for other environmentally-transmitted pathogens.
Suggested Citation
Katharine A Owers & Juliana Odetunde & Rosan Barbosa de Matos & Gielson Sacramento & Mayara Carvalho & Nivison Nery Jr & Federico Costa & Mitermayer G Reis & James E Childs & José E Hagan & Peter J Di, 2018.
"Fine-scale GPS tracking to quantify human movement patterns and exposure to leptospires in the urban slum environment,"
PLOS Neglected Tropical Diseases, Public Library of Science, vol. 12(8), pages 1-16, August.
Handle:
RePEc:plo:pntd00:0006752
DOI: 10.1371/journal.pntd.0006752
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0006752. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.