Author
Listed:
- Julien Riou
- Chiara Poletto
- Pierre-Yves Boëlle
Abstract
Model-based epidemiological assessment is useful to support decision-making at the beginning of an emerging Aedes-transmitted outbreak. However, early forecasts are generally unreliable as little information is available in the first few incidence data points. Here, we show how past Aedes-transmitted epidemics help improve these predictions. The approach was applied to the 2015–2017 Zika virus epidemics in three islands of the French West Indies, with historical data including other Aedes-transmitted diseases (chikungunya and Zika) in the same and other locations. Hierarchical models were used to build informative a priori distributions on the reproduction ratio and the reporting rates. The accuracy and sharpness of forecasts improved substantially when these a priori distributions were used in models for prediction. For example, early forecasts of final epidemic size obtained without historical information were 3.3 times too high on average (range: 0.2 to 5.8) with respect to the eventual size, but were far closer (1.1 times the real value on average, range: 0.4 to 1.5) using information on past CHIKV epidemics in the same places. Likewise, the 97.5% upper bound for maximal incidence was 15.3 times (range: 2.0 to 63.1) the actual peak incidence, and became much sharper at 2.4 times (range: 1.3 to 3.9) the actual peak incidence with informative a priori distributions. Improvements were more limited for the date of peak incidence and the total duration of the epidemic. The framework can adapt to all forecasting models at the early stages of emerging Aedes-transmitted outbreaks.Author summary: In December, 2015, Aedes mosquito-transmitted Zika outbreaks started in the French West Indies, about two years after chikungunya epidemics, spread by the same mosquito, hit the same region. Building on the similarities between these epidemics—regarding the route of transmission, the surveillance system, the population and the location—we show that prior information available at the time could have improved the forecasting of relevant public health indicators (i.e. epidemic size, maximal incidence, peak date and epidemic duration) from a very early point. The method we describe, together with the compilation of past epidemics, improves epidemic forecasting.
Suggested Citation
Julien Riou & Chiara Poletto & Pierre-Yves Boëlle, 2018.
"Improving early epidemiological assessment of emerging Aedes-transmitted epidemics using historical data,"
PLOS Neglected Tropical Diseases, Public Library of Science, vol. 12(6), pages 1-16, June.
Handle:
RePEc:plo:pntd00:0006526
DOI: 10.1371/journal.pntd.0006526
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0006526. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.