IDEAS home Printed from https://ideas.repec.org/a/plo/pntd00/0005429.html
   My bibliography  Save this article

The relationship between entomological indicators of Aedes aegypti abundance and dengue virus infection

Author

Listed:
  • Elizabeth A Cromwell
  • Steven T Stoddard
  • Christopher M Barker
  • Annelies Van Rie
  • William B Messer
  • Steven R Meshnick
  • Amy C Morrison
  • Thomas W Scott

Abstract

Routine entomological monitoring data are used to quantify the abundance of Ae. aegypti. The public health utility of these indicators is based on the assumption that greater mosquito abundance increases the risk of human DENV transmission, and therefore reducing exposure to the vector decreases incidence of infection. Entomological survey data from two longitudinal cohort studies in Iquitos, Peru, linked with 8,153 paired serological samples taken approximately six months apart were analyzed. Indicators of Ae. aegypti density were calculated from cross-sectional and longitudinal entomological data collected over a 12-month period for larval, pupal and adult Ae. aegypti. Log binomial models were used to estimate risk ratios (RR) to measure the association between Ae. aegypti abundance and the six-month risk of DENV seroconversion. RRs estimated using cross-sectional entomological data were compared to RRs estimated using longitudinal data. Higher cross-sectional Ae. aegypti densities were not associated with an increased risk of DENV seroconversion. Use of longitudinal entomological data resulted in RRs ranging from 1.01 (95% CI: 1.01, 1.02) to 1.30 (95% CI: 1.17, 1.46) for adult stage density estimates and RRs ranging from 1.21 (95% CI: 1.07, 1.37) to 1.75 (95% CI: 1.23, 2.5) for categorical immature indices. Ae. aegypti densities calculated from longitudinal entomological data were associated with DENV seroconversion, whereas those measured cross-sectionally were not. Ae. aegypti indicators calculated from cross-sectional surveillance, as is common practice, have limited public health utility in detecting areas or populations at high risk of DENV infection.Author summary: In this study, we compared measures of entomological risk collected through routine household entomological monitoring by estimating an association with human DENV infection. Longitudinal entomological and human serology data from Iquitos, Peru, were used to test associations between Ae. aegypti indices and the 6-month risk of DENV seroconversion. Our analysis found no association between cross-sectional measures of Ae. aegypti abundance and the risk of DENV seroconversion. Longitudinal measures of Ae. aegypti were better proxies for DENV risk, primarily among adult stage mosquito indicators. DENV transmission is complex and time-varying; the relationship between vector density and risk is not static nor adequately characterized through periodic entomological surveillance. While entomological monitoring will continue to serve a role in the evaluation of vector control interventions (e.g., comparing pre- and post-intervention abundance), our analysis challenges the validity of most Ae. aegypti indicators as adequate proxies for true DENV exposure risk.

Suggested Citation

  • Elizabeth A Cromwell & Steven T Stoddard & Christopher M Barker & Annelies Van Rie & William B Messer & Steven R Meshnick & Amy C Morrison & Thomas W Scott, 2017. "The relationship between entomological indicators of Aedes aegypti abundance and dengue virus infection," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(3), pages 1-22, March.
  • Handle: RePEc:plo:pntd00:0005429
    DOI: 10.1371/journal.pntd.0005429
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0005429
    Download Restriction: no

    File URL: https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0005429&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pntd.0005429?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0005429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.