Author
Listed:
- Ying-Si Lai
- Xiao-Nong Zhou
- Zhi-Heng Pan
- Jürg Utzinger
- Penelope Vounatsou
Abstract
Background: Clonorchiasis, one of the most important food-borne trematodiases, affects more than 12 million people in the People’s Republic of China (P.R. China). Spatially explicit risk estimates of Clonorchis sinensis infection are needed in order to target control interventions. Methodology: Georeferenced survey data pertaining to infection prevalence of C. sinensis in P.R. China from 2000 onwards were obtained via a systematic review in PubMed, ISI Web of Science, Chinese National Knowledge Internet, and Wanfang Data from January 1, 2000 until January 10, 2016, with no restriction of language or study design. Additional disease data were provided by the National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention in Shanghai. Environmental and socioeconomic proxies were extracted from remote-sensing and other data sources. Bayesian variable selection was carried out to identify the most important predictors of C. sinensis risk. Geostatistical models were applied to quantify the association between infection risk and the predictors of the disease, and to predict the risk of infection across P.R. China at high spatial resolution (over a grid with grid cell size of 5×5 km). Principal findings: We obtained clonorchiasis survey data at 633 unique locations in P.R. China. We observed that the risk of C. sinensis infection increased over time, particularly from 2005 onwards. We estimate that around 14.8 million (95% Bayesian credible interval 13.8–15.8 million) people in P.R. China were infected with C. sinensis in 2010. Highly endemic areas (≥ 20%) were concentrated in southern and northeastern parts of the country. The provinces with the highest risk of infection and the largest number of infected people were Guangdong, Guangxi, and Heilongjiang. Conclusions/Significance: Our results provide spatially relevant information for guiding clonorchiasis control interventions in P.R. China. The trend toward higher risk of C. sinensis infection in the recent past urges the Chinese government to pay more attention to the public health importance of clonorchiasis and to target interventions to high-risk areas. Author summary: Clonorchiasis is an important food-borne trematodiases and it has been estimated that more than 12 million people in China are affected. Precise information on where the disease occurs can help to identify priority areas for where control interventions should be implemented. We collected data from recent surveys on clonorchiasis and applied Bayesian geostatistical models to produce model-based, high-resolution risk maps for clonorchiasis in China. We found an increasing trend of infection risk from 2005 onwards. We estimated that approximately 14.8 million people in China were infected with Clonorchis sinensis in 2010. Areas where the high prevalence of C. sinensis was predicted were concentrated in the provinces of Guangdong, Guangxi, and Heilongjiang. Our results suggest that the Chinese government should pay more attention on the public health importance of clonorchiasis and that specific control efforts should be implemented in high-risk areas.
Suggested Citation
Ying-Si Lai & Xiao-Nong Zhou & Zhi-Heng Pan & Jürg Utzinger & Penelope Vounatsou, 2017.
"Risk mapping of clonorchiasis in the People’s Republic of China: A systematic review and Bayesian geostatistical analysis,"
PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(3), pages 1-16, March.
Handle:
RePEc:plo:pntd00:0005239
DOI: 10.1371/journal.pntd.0005239
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0005239. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.