IDEAS home Printed from https://ideas.repec.org/a/plo/pntd00/0003876.html
   My bibliography  Save this article

Development of a Novel Rabies Simulation Model for Application in a Non-endemic Environment

Author

Listed:
  • Salome Dürr
  • Michael P Ward

Abstract

Domestic dog rabies is an endemic disease in large parts of the developing world and also epidemic in previously free regions. For example, it continues to spread in eastern Indonesia and currently threatens adjacent rabies-free regions with high densities of free-roaming dogs, including remote northern Australia. Mathematical and simulation disease models are useful tools to provide insights on the most effective control strategies and to inform policy decisions. Existing rabies models typically focus on long-term control programs in endemic countries. However, simulation models describing the dog rabies incursion scenario in regions where rabies is still exotic are lacking. We here describe such a stochastic, spatially explicit rabies simulation model that is based on individual dog information collected in two remote regions in northern Australia. Illustrative simulations produced plausible results with epidemic characteristics expected for rabies outbreaks in disease free regions (mean R0 1.7, epidemic peak 97 days post-incursion, vaccination as the most effective response strategy). Systematic sensitivity analysis identified that model outcomes were most sensitive to seven of the 30 model parameters tested. This model is suitable for exploring rabies spread and control before an incursion in populations of largely free-roaming dogs that live close together with their owners. It can be used for ad-hoc contingency or response planning prior to and shortly after incursion of dog rabies in previously free regions. One challenge that remains is model parameterisation, particularly how dogs’ roaming and contacts and biting behaviours change following a rabies incursion in a previously rabies free population.Author Summary: Rabies in domestic dog populations still causes >50,000 human deaths worldwide each year. While its eradication by vaccination of the reservoir population (dogs and wildlife) was successful in many parts of the world, it is still present in the developing world and continues to spread to new regions. Theoretical rabies models supporting control plans do exist for rabies endemic regions; however these models usually provide information for long-term programs. Here, we describe a novel rabies simulation model for application in rabies-free regions experiencing an incursion. The model simulates a rabies outbreak in the free-ranging dog population in remote indigenous communities in northern Australia. Vaccination, dog density reduction and dog confinement are implemented as control strategies. Model outputs suggest that the outbreak lasts for an average of 7 months and typically spreads through all communities of the region. Dog vaccination was found to be the most effective response strategy. The model produces plausible results and can be used to provide information for ad-hoc response planning before and shortly after rabies incursion.

Suggested Citation

  • Salome Dürr & Michael P Ward, 2015. "Development of a Novel Rabies Simulation Model for Application in a Non-endemic Environment," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(6), pages 1-22, June.
  • Handle: RePEc:plo:pntd00:0003876
    DOI: 10.1371/journal.pntd.0003876
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0003876
    Download Restriction: no

    File URL: https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0003876&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pntd.0003876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0003876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.