Author
Listed:
- Akinola S Oluwole
- Uwem F Ekpo
- Dimitrios-Alexios Karagiannis-Voules
- Eniola M Abe
- Francisca O Olamiju
- Sunday Isiyaku
- Chukwu Okoronkwo
- Yisa Saka
- Obiageli J Nebe
- Eka I Braide
- Chiedu F Mafiana
- Jürg Utzinger
- Penelope Vounatsou
Abstract
Background: The acceleration of the control of soil-transmitted helminth (STH) infections in Nigeria, emphasizing preventive chemotherapy, has become imperative in light of the global fight against neglected tropical diseases. Predictive risk maps are an important tool to guide and support control activities. Methodology: STH infection prevalence data were obtained from surveys carried out in 2011 using standard protocols. Data were geo-referenced and collated in a nationwide, geographic information system database. Bayesian geostatistical models with remotely sensed environmental covariates and variable selection procedures were utilized to predict the spatial distribution of STH infections in Nigeria. Principal Findings: We found that hookworm, Ascaris lumbricoides, and Trichuris trichiura infections are endemic in 482 (86.8%), 305 (55.0%), and 55 (9.9%) locations, respectively. Hookworm and A. lumbricoides infection co-exist in 16 states, while the three species are co-endemic in 12 states. Overall, STHs are endemic in 20 of the 36 states of Nigeria, including the Federal Capital Territory of Abuja. The observed prevalence at endemic locations ranged from 1.7% to 51.7% for hookworm, from 1.6% to 77.8% for A. lumbricoides, and from 1.0% to 25.5% for T. trichiura. Model-based predictions ranged from 0.7% to 51.0% for hookworm, from 0.1% to 82.6% for A. lumbricoides, and from 0.0% to 18.5% for T. trichiura. Our models suggest that day land surface temperature and dense vegetation are important predictors of the spatial distribution of STH infection in Nigeria. In 2011, a total of 5.7 million (13.8%) school-aged children were predicted to be infected with STHs in Nigeria. Mass treatment at the local government area level for annual or bi-annual treatment of the school-aged population in Nigeria in 2011, based on World Health Organization prevalence thresholds, were estimated at 10.2 million tablets. Conclusions/Significance: The predictive risk maps and estimated deworming needs presented here will be helpful for escalating the control and spatial targeting of interventions against STH infections in Nigeria. Author Summary: Infections with three kinds of parasitic worms—hookworm, roundworm, and whipworm—are collectively known as soil-transmitted helminths (STHs). These parasitic worm infections are widespread in Nigeria, but the exact distribution is poorly understood. In view of the global commitment to control STH infections, there is a need to accelerate the mapping of STH infections to guide control interventions, such as large-scale administration of deworming drugs. In this study, we collated survey data from the year 2011 for Nigeria. The data were utilized to predict the distribution of STH infection based on environmental and socioeconomic covariates, and employing a Bayesian geostatistical modeling approach. Our results indicated that STH infections are widely distributed across Nigeria with prevalence estimates as high as 83% for roundworm, 50% for hookworm, and 19% for whipworm infections at specific survey locations. We predict that 5.7 million school-aged children were infected with STHs. The numbers of deworming tablets for annual or bi-annual treatment of the school-aged population at local government areas level in Nigeria for 2011 were estimated to be 10.2 million.
Suggested Citation
Akinola S Oluwole & Uwem F Ekpo & Dimitrios-Alexios Karagiannis-Voules & Eniola M Abe & Francisca O Olamiju & Sunday Isiyaku & Chukwu Okoronkwo & Yisa Saka & Obiageli J Nebe & Eka I Braide & Chiedu F , 2015.
"Bayesian Geostatistical Model-Based Estimates of Soil-Transmitted Helminth Infection in Nigeria, Including Annual Deworming Requirements,"
PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(4), pages 1-15, April.
Handle:
RePEc:plo:pntd00:0003740
DOI: 10.1371/journal.pntd.0003740
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0003740. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.