Author
Listed:
- Francois Rebaudo
- Jane Costa
- Carlos E Almeida
- Jean-Francois Silvain
- Myriam Harry
- Olivier Dangles
Abstract
Background: Understanding the mechanisms that influence the population dynamics and spatial genetic structure of the vectors of pathogens infecting humans is a central issue in tropical epidemiology. In view of the rapid changes in the features of landscape pathogen vectors live in, this issue requires new methods that consider both natural and human systems and their interactions. In this context, individual-based model (IBM) simulations represent powerful yet poorly developed approaches to explore the response of pathogen vectors in heterogeneous social-ecological systems, especially when field experiments cannot be performed. Methodology/Principal Findings: We first present guidelines for the use of a spatially explicit IBM, to simulate population genetics of pathogen vectors in changing landscapes. We then applied our model with Triatoma brasiliensis, originally restricted to sylvatic habitats and now found in peridomestic and domestic habitats, posing as the most important Trypanosoma cruzi vector in Northeastern Brazil. We focused on the effects of vector migration rate, maximum dispersal distance and attraction by domestic habitat on T. brasiliensis population dynamics and spatial genetic structure. Optimized for T. brasiliensis using field data pairwise fixation index (FST) from microsatellite loci, our simulations confirmed the importance of these three variables to understand vector genetic structure at the landscape level. We then ran prospective scenarios accounting for land-use change (deforestation and urbanization), which revealed that human-induced land-use change favored higher genetic diversity among sampling points. Conclusions/Significance: Our work shows that mechanistic models may be useful tools to link observed patterns with processes involved in the population genetics of tropical pathogen vectors in heterogeneous social-ecological landscapes. Our hope is that our study may provide a testable and applicable modeling framework to a broad community of epidemiologists for formulating scenarios of landscape change consequences on vector dynamics, with potential implications for their surveillance and control. Author Summary: Worldwide, humans are modifying landscapes at an unprecedented rate. These modifications have an influence on the ecology of pathogen vectors, yet this issue has received relatively little input from modeling research. The current study presents guidelines for the use of a modeling framework for the representation of the dynamics and spatial genetic structure of pathogen vectors. It allows considering spatiotemporal landscape modifications explicitly, to represent human-altered modifications and consequences. We applied this modeling framework to Triatoma brasiliensis, vector of the pathogen Trypanosoma cruzi responsible for the Chagas disease, in the semi-arid Northeastern Brazil. Using field data of pairwise fixation index (FST) from microsatellite loci, we found that migration rate, maximum dispersal distance and attraction by domestic habitat were all key parameters to understand vector spatial genetic structure at the landscape level. At the interface across disciplines, this study provides to the community of epidemiologists a testable and applicable framework to foresee landscape modification consequences on vector dynamics and genetic structure, with potential implications for their surveillance and control.
Suggested Citation
Francois Rebaudo & Jane Costa & Carlos E Almeida & Jean-Francois Silvain & Myriam Harry & Olivier Dangles, 2014.
"Simulating Population Genetics of Pathogen Vectors in Changing Landscapes: Guidelines and Application with Triatoma brasiliensis,"
PLOS Neglected Tropical Diseases, Public Library of Science, vol. 8(8), pages 1-8, August.
Handle:
RePEc:plo:pntd00:0003068
DOI: 10.1371/journal.pntd.0003068
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0003068. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.