Author
Listed:
- Valerie A Paz-Soldan
- Robert C Reiner Jr
- Amy C Morrison
- Steven T Stoddard
- Uriel Kitron
- Thomas W Scott
- John P Elder
- Eric S Halsey
- Tadeusz J Kochel
- Helvio Astete
- Gonzalo M Vazquez-Prokopec
Abstract
Quantifying human mobility has significant consequences for studying physical activity, exposure to pathogens, and generating more realistic infectious disease models. Location-aware technologies such as Global Positioning System (GPS)-enabled devices are used increasingly as a gold standard for mobility research. The main goal of this observational study was to compare and contrast the information obtained through GPS and semi-structured interviews (SSI) to assess issues affecting data quality and, ultimately, our ability to measure fine-scale human mobility. A total of 160 individuals, ages 7 to 74, from Iquitos, Peru, were tracked using GPS data-loggers for 14 days and later interviewed using the SSI about places they visited while tracked. A total of 2,047 and 886 places were reported in the SSI and identified by GPS, respectively. Differences in the concordance between methods occurred by location type, distance threshold (within a given radius to be considered a match) selected, GPS data collection frequency (i.e., 30, 90 or 150 seconds) and number of GPS points near the SSI place considered to define a match. Both methods had perfect concordance identifying each participant's house, followed by 80–100% concordance for identifying schools and lodgings, and 50–80% concordance for residences and commercial and religious locations. As the distance threshold selected increased, the concordance between SSI and raw GPS data increased (beyond 20 meters most locations reached their maximum concordance). Processing raw GPS data using a signal-clustering algorithm decreased overall concordance to 14.3%. The most common causes of discordance as described by a sub-sample (n = 101) with whom we followed-up were GPS units being accidentally off (30%), forgetting or purposely not taking the units when leaving home (24.8%), possible barriers to the signal (4.7%) and leaving units home to recharge (4.6%). We provide a quantitative assessment of the strengths and weaknesses of both methods for capturing fine-scale human mobility.Author Summary: Being able to quantify human movement is important for studying activity patterns, exposure to pathogens and developing realistic infectious disease models. We compared fine-scale human mobility data obtained by Global Positioning System (GPS)-enabled devices and semi-structured interviews (SSI) from 160 individuals in Iquitos, Peru, in order to assess the quality of data using these two different approaches and our ability to measure fine-scale human mobility patterns in a resource-poor urban environment. Using various methods to process the GPS data, we found the SSI identified more locations a person had visited than GPS. Though the GPS gave more precise data, there were behavioral, technical, and analytical barriers. The SSI provided richer context and was easier to process, but also had more false positives. SSI was the only option for identifying locations retrospectively.
Suggested Citation
Valerie A Paz-Soldan & Robert C Reiner Jr & Amy C Morrison & Steven T Stoddard & Uriel Kitron & Thomas W Scott & John P Elder & Eric S Halsey & Tadeusz J Kochel & Helvio Astete & Gonzalo M Vazquez-Pro, 2014.
"Strengths and Weaknesses of Global Positioning System (GPS) Data-Loggers and Semi-structured Interviews for Capturing Fine-scale Human Mobility: Findings from Iquitos, Peru,"
PLOS Neglected Tropical Diseases, Public Library of Science, vol. 8(6), pages 1-11, June.
Handle:
RePEc:plo:pntd00:0002888
DOI: 10.1371/journal.pntd.0002888
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0002888. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.