IDEAS home Printed from https://ideas.repec.org/a/plo/pntd00/0002771.html
   My bibliography  Save this article

Prediction of High Incidence of Dengue in the Philippines

Author

Listed:
  • Anna L Buczak
  • Benjamin Baugher
  • Steven M Babin
  • Liane C Ramac-Thomas
  • Erhan Guven
  • Yevgeniy Elbert
  • Phillip T Koshute
  • John Mark S Velasco
  • Vito G Roque Jr
  • Enrique A Tayag
  • In-Kyu Yoon
  • Sheri H Lewis

Abstract

Background: Accurate prediction of dengue incidence levels weeks in advance of an outbreak may reduce the morbidity and mortality associated with this neglected disease. Therefore, models were developed to predict high and low dengue incidence in order to provide timely forewarnings in the Philippines. Methods: Model inputs were chosen based on studies indicating variables that may impact dengue incidence. The method first uses Fuzzy Association Rule Mining techniques to extract association rules from these historical epidemiological, environmental, and socio-economic data, as well as climate data indicating future weather patterns. Selection criteria were used to choose a subset of these rules for a classifier, thereby generating a Prediction Model. The models predicted high or low incidence of dengue in a Philippines province four weeks in advance. The threshold between high and low was determined relative to historical incidence data. Principal Findings: Model accuracy is described by Positive Predictive Value (PPV), Negative Predictive Value (NPV), Sensitivity, and Specificity computed on test data not previously used to develop the model. Selecting a model using the F0.5 measure, which gives PPV more importance than Sensitivity, gave these results: PPV = 0.780, NPV = 0.938, Sensitivity = 0.547, Specificity = 0.978. Using the F3 measure, which gives Sensitivity more importance than PPV, the selected model had PPV = 0.778, NPV = 0.948, Sensitivity = 0.627, Specificity = 0.974. The decision as to which model has greater utility depends on how the predictions will be used in a particular situation. Conclusions: This method builds prediction models for future dengue incidence in the Philippines and is capable of being modified for use in different situations; for diseases other than dengue; and for regions beyond the Philippines. The Philippines dengue prediction models predicted high or low incidence of dengue four weeks in advance of an outbreak with high accuracy, as measured by PPV, NPV, Sensitivity, and Specificity. Author Summary: A largely automated methodology is described for creating models that use past and recent data to predict dengue incidence levels several weeks in advance for a specific time period and a geographic region that can be sub-national. The input data include historical and recent dengue incidence, socioeconomic factors, and remotely sensed variables related to weather, climate, and the environment. Among the climate variables are those known to indicate future weather patterns that may or may not be seasonal. The final prediction models adhere to these principles: 1) the data used must be available at the time the prediction is made (avoiding pitfalls made by studies that use recent data that, in actual practice, would not be available until after the date the prediction was made); and 2) the models are tested on data not used in their development (thereby avoiding overly optimistic measures of accuracy of the prediction). Local public health preferences for low numbers of false positives and negatives are taken into account. These models appear to be robust even when applied to nearby geographic regions that were not used in model development. The method may be applied to other vector borne and environmentally affected diseases.

Suggested Citation

  • Anna L Buczak & Benjamin Baugher & Steven M Babin & Liane C Ramac-Thomas & Erhan Guven & Yevgeniy Elbert & Phillip T Koshute & John Mark S Velasco & Vito G Roque Jr & Enrique A Tayag & In-Kyu Yoon & S, 2014. "Prediction of High Incidence of Dengue in the Philippines," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 8(4), pages 1-13, April.
  • Handle: RePEc:plo:pntd00:0002771
    DOI: 10.1371/journal.pntd.0002771
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0002771
    Download Restriction: no

    File URL: https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0002771&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pntd.0002771?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicholas G. Reich & Justin Lessler & Krzysztof Sakrejda & Stephen A. Lauer & Sopon Iamsirithaworn & Derek A. T. Cummings, 2016. "Case Study in Evaluating Time Series Prediction Models Using the Relative Mean Absolute Error," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 285-292, July.
    2. Zhichao Li & Helen Gurgel & Nadine Dessay & Luojia Hu & Lei Xu & Peng Gong, 2020. "Semi-Supervised Text Classification Framework: An Overview of Dengue Landscape Factors and Satellite Earth Observation," IJERPH, MDPI, vol. 17(12), pages 1-29, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0002771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.