Author
Listed:
- Dimitrios-Alexios Karagiannis-Voules
- Ronaldo G C Scholte
- Luiz H Guimarães
- Jürg Utzinger
- Penelope Vounatsou
Abstract
Background: Leishmaniasis is endemic in 98 countries with an estimated 350 million people at risk and approximately 2 million cases annually. Brazil is one of the most severely affected countries. Methodology: We applied Bayesian geostatistical negative binomial models to analyze reported incidence data of cutaneous and visceral leishmaniasis in Brazil covering a 10-year period (2001–2010). Particular emphasis was placed on spatial and temporal patterns. The models were fitted using integrated nested Laplace approximations to perform fast approximate Bayesian inference. Bayesian variable selection was employed to determine the most important climatic, environmental, and socioeconomic predictors of cutaneous and visceral leishmaniasis. Principal Findings: For both types of leishmaniasis, precipitation and socioeconomic proxies were identified as important risk factors. The predicted number of cases in 2010 were 30,189 (standard deviation [SD]: 7,676) for cutaneous leishmaniasis and 4,889 (SD: 288) for visceral leishmaniasis. Our risk maps predicted the highest numbers of infected people in the states of Minas Gerais and Pará for visceral and cutaneous leishmaniasis, respectively. Conclusions/Significance: Our spatially explicit, high-resolution incidence maps identified priority areas where leishmaniasis control efforts should be targeted with the ultimate goal to reduce disease incidence. Author Summary: Leishmaniasis is a neglected tropical disease that causes approximately 20 to 40 thousand deaths every year. In Brazil, more than 600,000 clinical cases of leishmaniasis have been reported since 1990. Almost 90% of these cases are due to cutaneous leishmaniasis, whereas the remaining 10% are due to visceral leishmaniasis. Understanding of disease transmission, together with model-based incidence maps, will assist in designing and optimizing control efforts. We used reported leishmaniasis incidence data in Brazil covering the period between 2001 and 2010 to explore the association of the disease with climatic, environmental, and socioeconomic variables, and to predict its spatial distribution using Bayesian geostatistical models. We produced countrywide high spatial resolution maps for both forms of leishmaniasis and estimated the number of infected people, stratified by state. We believe that our incidence maps are useful to prioritize the spatial targeting of prevention and control.
Suggested Citation
Dimitrios-Alexios Karagiannis-Voules & Ronaldo G C Scholte & Luiz H Guimarães & Jürg Utzinger & Penelope Vounatsou, 2013.
"Bayesian Geostatistical Modeling of Leishmaniasis Incidence in Brazil,"
PLOS Neglected Tropical Diseases, Public Library of Science, vol. 7(5), pages 1-13, May.
Handle:
RePEc:plo:pntd00:0002213
DOI: 10.1371/journal.pntd.0002213
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0002213. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.