Author
Listed:
- Archie C A Clements
- Lucia W Kur
- Gideon Gatpan
- Jeremiah M Ngondi
- Paul M Emerson
- Mounir Lado
- Anthony Sabasio
- Jan H Kolaczinski
Abstract
Background: Trachoma is a major cause of blindness in Southern Sudan. Its distribution has only been partially established and many communities in need of intervention have therefore not been identified or targeted. The present study aimed to develop a tool to improve targeting of survey and control activities. Methods/Principal Findings: A national trachoma risk map was developed using Bayesian geostatistics models, incorporating trachoma prevalence data from 112 geo-referenced communities surveyed between 2001 and 2009. Logistic regression models were developed using active trachoma (trachomatous inflammation follicular and/or trachomatous inflammation intense) in 6345 children aged 1–9 years as the outcome, and incorporating fixed effects for age, long-term average rainfall (interpolated from weather station data) and land cover (i.e. vegetation type, derived from satellite remote sensing), as well as geostatistical random effects describing spatial clustering of trachoma. The model predicted the west of the country to be at no or low trachoma risk. Trachoma clusters in the central, northern and eastern areas had a radius of 8 km after accounting for the fixed effects. Conclusion: In Southern Sudan, large-scale spatial variation in the risk of active trachoma infection is associated with aridity. Spatial prediction has identified likely high-risk areas to be prioritized for more data collection, potentially to be followed by intervention. Author Summary: Trachoma, caused by the bacterium Chlamydia trachomatis, is the leading cause of preventable blindness worldwide and a major cause of blindness in Southern Sudan. However, the trachoma distribution in Southern Sudan has only been partially established and many communities in need of intervention have not been identified or targeted. Incomplete mapping and intervention coverage is largely attributable to trachoma resources being scarce and not always deployed most efficiently. The present study aimed at improving programme efficiency by developing maps to help target the available resources for trachoma surveys and interventions to areas where these are most needed. Data on active trachoma prevalence, collected during baseline surveys between 2001 and 2009, were incorporated into Bayesian geostatistical models to develop a national trachoma risk map. The model predicted the west of the country to be largely at no or very low trachoma risk, while most of the high-risk areas are located in the centre, north, and south-east. Risk mapping has allowed Southern Sudan's trachoma control programme to identify areas where collection of additional data would be most useful. As a direct result, baseline data were collected in March 2010 for the whole of Unity State, with antibiotic mass drug administration being scaled up from June 2010 onwards.
Suggested Citation
Archie C A Clements & Lucia W Kur & Gideon Gatpan & Jeremiah M Ngondi & Paul M Emerson & Mounir Lado & Anthony Sabasio & Jan H Kolaczinski, 2010.
"Targeting Trachoma Control through Risk Mapping: The Example of Southern Sudan,"
PLOS Neglected Tropical Diseases, Public Library of Science, vol. 4(8), pages 1-9, August.
Handle:
RePEc:plo:pntd00:0000799
DOI: 10.1371/journal.pntd.0000799
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0000799. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.