IDEAS home Printed from https://ideas.repec.org/a/plo/pmed00/1003542.html
   My bibliography  Save this article

Probabilistic seasonal dengue forecasting in Vietnam: A modelling study using superensembles

Author

Listed:
  • Felipe J Colón-González
  • Leonardo Soares Bastos
  • Barbara Hofmann
  • Alison Hopkin
  • Quillon Harpham
  • Tom Crocker
  • Rosanna Amato
  • Iacopo Ferrario
  • Francesca Moschini
  • Samuel James
  • Sajni Malde
  • Eleanor Ainscoe
  • Vu Sinh Nam
  • Dang Quang Tan
  • Nguyen Duc Khoa
  • Mark Harrison
  • Gina Tsarouchi
  • Darren Lumbroso
  • Oliver J Brady
  • Rachel Lowe

Abstract

Background: With enough advanced notice, dengue outbreaks can be mitigated. As a climate-sensitive disease, environmental conditions and past patterns of dengue can be used to make predictions about future outbreak risk. These predictions improve public health planning and decision-making to ultimately reduce the burden of disease. Past approaches to dengue forecasting have used seasonal climate forecasts, but the predictive ability of a system using different lead times in a year-round prediction system has been seldom explored. Moreover, the transition from theoretical to operational systems integrated with disease control activities is rare. Methods and findings: We introduce an operational seasonal dengue forecasting system for Vietnam where Earth observations, seasonal climate forecasts, and lagged dengue cases are used to drive a superensemble of probabilistic dengue models to predict dengue risk up to 6 months ahead. Bayesian spatiotemporal models were fit to 19 years (2002–2020) of dengue data at the province level across Vietnam. A superensemble of these models then makes probabilistic predictions of dengue incidence at various future time points aligned with key Vietnamese decision and planning deadlines. We demonstrate that the superensemble generates more accurate predictions of dengue incidence than the individual models it incorporates across a suite of time horizons and transmission settings. Using historical data, the superensemble made slightly more accurate predictions (continuous rank probability score [CRPS] = 66.8, 95% CI 60.6–148.0) than a baseline model which forecasts the same incidence rate every month (CRPS = 79.4, 95% CI 78.5–80.5) at lead times of 1 to 3 months, albeit with larger uncertainty. The outbreak detection capability of the superensemble was considerably larger (69%) than that of the baseline model (54.5%). Predictions were most accurate in southern Vietnam, an area that experiences semi-regular seasonal dengue transmission. The system also demonstrated added value across multiple areas compared to previous practice of not using a forecast. We use the system to make a prospective prediction for dengue incidence in Vietnam for the period May to October 2020. Prospective predictions made with the superensemble were slightly more accurate (CRPS = 110, 95% CI 102–575) than those made with the baseline model (CRPS = 125, 95% CI 120–168) but had larger uncertainty. Finally, we propose a framework for the evaluation of probabilistic predictions. Despite the demonstrated value of our forecasting system, the approach is limited by the consistency of the dengue case data, as well as the lack of publicly available, continuous, and long-term data sets on mosquito control efforts and serotype-specific case data. Conclusions: This study shows that by combining detailed Earth observation data, seasonal climate forecasts, and state-of-the-art models, dengue outbreaks can be predicted across a broad range of settings, with enough lead time to meaningfully inform dengue control. While our system omits some important variables not currently available at a subnational scale, the majority of past outbreaks could be predicted up to 3 months ahead. Over the next 2 years, the system will be prospectively evaluated and, if successful, potentially extended to other areas and other climate-sensitive disease systems. Why was this study done?: What did the researchers do and find?: What do these findings mean?:

Suggested Citation

  • Felipe J Colón-González & Leonardo Soares Bastos & Barbara Hofmann & Alison Hopkin & Quillon Harpham & Tom Crocker & Rosanna Amato & Iacopo Ferrario & Francesca Moschini & Samuel James & Sajni Malde &, 2021. "Probabilistic seasonal dengue forecasting in Vietnam: A modelling study using superensembles," PLOS Medicine, Public Library of Science, vol. 18(3), pages 1-30, March.
  • Handle: RePEc:plo:pmed00:1003542
    DOI: 10.1371/journal.pmed.1003542
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1003542
    Download Restriction: no

    File URL: https://journals.plos.org/plosmedicine/article/file?id=10.1371/journal.pmed.1003542&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pmed.1003542?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Villi Dane M. Go, 2023. "Communicable disease surveillance through predictive analysis: A comparative analysis of prediction models," HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE - ENGINEERING AND TECHNOLOGY, HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE, HO CHI MINH CITY OPEN UNIVERSITY, vol. 13(2), pages 45-54.
    2. Ray, Evan L. & Brooks, Logan C. & Bien, Jacob & Biggerstaff, Matthew & Bosse, Nikos I. & Bracher, Johannes & Cramer, Estee Y. & Funk, Sebastian & Gerding, Aaron & Johansson, Michael A. & Rumack, Aaron, 2023. "Comparing trained and untrained probabilistic ensemble forecasts of COVID-19 cases and deaths in the United States," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1366-1383.
    3. Panja, Madhurima & Chakraborty, Tanujit & Nadim, Sk Shahid & Ghosh, Indrajit & Kumar, Uttam & Liu, Nan, 2023. "An ensemble neural network approach to forecast Dengue outbreak based on climatic condition," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    4. Sarbhan Singh & Lai Chee Herng & Lokman Hakim Sulaiman & Shew Fung Wong & Jenarun Jelip & Norhayati Mokhtar & Quillon Harpham & Gina Tsarouchi & Balvinder Singh Gill, 2022. "The Effects of Meteorological Factors on Dengue Cases in Malaysia," IJERPH, MDPI, vol. 19(11), pages 1-24, May.
    5. Vicente Navarro Valencia & Yamilka Díaz & Juan Miguel Pascale & Maciej F. Boni & Javier E. Sanchez-Galan, 2021. "Assessing the Effect of Climate Variables on the Incidence of Dengue Cases in the Metropolitan Region of Panama City," IJERPH, MDPI, vol. 18(22), pages 1-18, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pmed00:1003542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosmedicine (email available below). General contact details of provider: https://journals.plos.org/plosmedicine/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.