IDEAS home Printed from https://ideas.repec.org/a/plo/pmed00/1001050.html
   My bibliography  Save this article

Energy Density, Portion Size, and Eating Occasions: Contributions to Increased Energy Intake in the United States, 1977–2006

Author

Listed:
  • Kiyah J Duffey
  • Barry M Popkin

Abstract

Using data from three surveys, Kiyah Duffey and Barry Popkin found that changes in eating/drinking occasions and portion size consistently account for most of the change in daily total energy intake over a 30-year period. Background: Competing theories attempt to explain changes in total energy (TE) intake; however, a rigorous, comprehensive examination of these explanations has not been undertaken. Our objective was to examine the relative contribution of energy density (ED), portion size (PS), and the number of eating/drinking occasions (EOs) to changes in daily TE. Methods and Findings: Using cross-sectional nationally representative data from the Nationwide Food Consumption Survey (1977–78), Continuing Survey of Food Intakes of Individuals (1989–91), and National Health and Nutrition Examination Surveys (1994–98 and 2003–06) for adults (aged ≥19 y), we mathematically decompose TE (kcal/d) to understand the relative contributions of each component—PS (grams/EO), ED (kcal/g/EO) and EO(number)—to changes in TE over time. There was an increase in TE intake (+570 kcal/d) and the number of daily EOs (+1.1) between 1977–78 and 2003–06. The average PS increased between 1977–78 and 1994–98, then dropped slightly between 1994–98 and 2003–06, while the average ED remained steady between 1977–78 and 1989–91, then declined slightly between 1989–91 and 1994–98. Estimates from the decomposition statistical models suggest that between 1977–78 and 1989–91, annualized changes in PS contributed nearly 15 kcal/d/y to increases in TE, while changes in EO accounted for just 4 kcal/d/y. Between 1994–98 and 2003–06 changes in EO accounted for 39 kcal/d/y of increase and changes in PS accounted for 1 kcal/d/y of decline in the annualized change in TE. Conclusions: While all three components have contributed to some extent to 30-y changes in TE, changes in EO and PS have accounted for most of the change. These findings suggest a new focus for efforts to reduce energy imbalances in US adults. : Please see later in the article for the Editors' Summary Background: Since the mid 1970s, the proportion of people who are obese (people who have an unhealthy proportion of body fat) has increased sharply in many countries. In the US, the proportion has doubled since 1980, and a third of all US adults—more than 72 million people—are now classified as obese. That is, they have a body mass index (BMI, an indicator of body fat calculated by dividing a person's weight in kilograms by their height in meters squared) of greater than 30. Compared to people with a healthy weight (a BMI between 18.5 and 25), obese individuals and overweight people (who have a BMI between 25 and 29.9) have an increased risk of developing diabetes, heart disease, and stroke and tend to die younger. People become unhealthily fat by consuming food and drink that contains more energy (kilocalories, or kcal) than they need for their daily activities. In these circumstances, the body converts the excess energy into fat stores. Why Was This Study Done?: Because obesity causes illness and premature death, it is essential that the obesity epidemic is halted and, if possible, reversed. But before public health policies can be formulated to prevent obesity, we need to understand what is driving the epidemic. Many experts believe that increases in the total daily intake of energy from food and drink, irrespective of changes in physical activity, are enough to explain the observed increases in weight at the population level since the 1970s. But why has total energy intake increased? Three main causes have been proposed—an increase in the frequency of meals and snacks (eating occasions), increases in the typical food and drink portion sizes, and changes in the energy density of the foods and drinks consumed. In this study, the researchers use data from US food surveys to examine the relative contributions made by these three variables to changes in daily total energy intake between 1977 and 2006. What Did the Researchers Do and Find?: The researchers used a technique called “mathematical decomposition” to analyze cross-sectional, nationally representative dietary intake data for US adults collected in food surveys undertaken in 1977–78, 1989–91, 1994–98, and 2003–06. Cross-sectional surveys examine a group of people at a single time point; food surveys collect information about all the food and drink consumed by individuals over a 24-hour period. The average daily total energy intake increased from 1,803 kcal in 1977–78 to 2,374 kcal in 2003–06, an increase of 570 kcal. In the last decade of the study alone, the average daily energy intake increased by 229 kcal. Between 1977–78 and 1989–91, changes in portion size accounted for an annual increase in the daily total energy intake of nearly 15 kcal, whereas changes in the number of eating occasions accounted for an increase of just 4 kcal. By contrast, between 1994–98 and 2003–06, changes in the number of eating occasions accounted for an annual increase in daily total energy intake of 39 kcal, whereas changes in portion size accounted for an annual decrease in daily energy intake of 1 kcal. Changes in the energy density of food and drink accounted for a slight decrease in daily total energy intake over the 30-year study period. What Do These Findings Mean?: These findings indicate that, although the energy density of food and drink, portion size, and the number of meals and snacks per day have all contributed to changes in the average daily total energy intake of US adults over the past 30 years, increases in the number of eating occasions and in portion size have accounted for most of the change. The accuracy of these findings may be affected by the use of self-reporting in the food surveys (people tend to underestimate the calorie content of “junk” food) and by the mathematical formula used to assess the relative contribution of each component of daily energy intake. Nevertheless, these findings suggest that efforts to prevent obesity among US adults (and among adults in other developed countries) should focus on reducing the number of meals and snacks people consume during the day as a way to reduce the energy imbalance caused by recent increases in energy intake. Additional Information: Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001050.

Suggested Citation

  • Kiyah J Duffey & Barry M Popkin, 2011. "Energy Density, Portion Size, and Eating Occasions: Contributions to Increased Energy Intake in the United States, 1977–2006," PLOS Medicine, Public Library of Science, vol. 8(6), pages 1-8, June.
  • Handle: RePEc:plo:pmed00:1001050
    DOI: 10.1371/journal.pmed.1001050
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001050
    Download Restriction: no

    File URL: https://journals.plos.org/plosmedicine/article/file?id=10.1371/journal.pmed.1001050&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pmed.1001050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pmed00:1001050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosmedicine (email available below). General contact details of provider: https://journals.plos.org/plosmedicine/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.