Author
Listed:
- Beate Sander
- Jeffrey C Kwong
- Chris T Bauch
- Andreas Maetzel
- Allison McGeer
- Janet M Raboud
- Murray Krahn
Abstract
Beate Sander and colleagues assess the cost-effectiveness of the program that provides free seasonal influenza vaccines to the entire population of Ontario, Canada.Background: In July 2000, the province of Ontario, Canada, initiated a universal influenza immunization program (UIIP) to provide free seasonal influenza vaccines for the entire population. This is the first large-scale program of its kind worldwide. The objective of this study was to conduct an economic appraisal of Ontario's UIIP compared to a targeted influenza immunization program (TIIP). Methods and Findings: A cost-utility analysis using Ontario health administrative data was performed. The study was informed by a companion ecological study comparing physician visits, emergency department visits, hospitalizations, and deaths between 1997 and 2004 in Ontario and nine other Canadian provinces offering targeted immunization programs. The relative change estimates from pre-2000 to post-2000 as observed in other provinces were applied to pre-UIIP Ontario event rates to calculate the expected number of events had Ontario continued to offer targeted immunization. Main outcome measures were quality-adjusted life years (QALYs), costs in 2006 Canadian dollars, and incremental cost-utility ratios (incremental cost per QALY gained). Program and other costs were drawn from Ontario sources. Utility weights were obtained from the literature. The incremental cost of the program per QALY gained was calculated from the health care payer perspective. Ontario's UIIP costs approximately twice as much as a targeted program but reduces influenza cases by 61% and mortality by 28%, saving an estimated 1,134 QALYs per season overall. Reducing influenza cases decreases health care services cost by 52%. Most cost savings can be attributed to hospitalizations avoided. The incremental cost-effectiveness ratio is Can$10,797/QALY gained. Results are most sensitive to immunization cost and number of deaths averted. Conclusions: Universal immunization against seasonal influenza was estimated to be an economically attractive intervention. : Please see later in the article for the Editors' Summary Background: Annual outbreaks (epidemics) of influenza—a viral disease of the nose, throat, and airways—make millions of people ill and kill about 500,000 individuals every year. In doing so, they impose a considerable economic burden on society in terms of health care costs and lost productivity. Influenza epidemics occur because small but frequent changes in the viral proteins to which the immune system responds mean that an immune response produced one year by exposure to an influenza virus provides only partial protection against influenza the next year. Annual immunization with a vaccine that contains killed influenza viruses of the major circulating strains can boost this natural immunity and greatly reduce a person's chances of catching influenza. Consequently, many countries run seasonal influenza vaccine programs. These programs usually target people at high risk of complications from influenza and individuals likely to come into close contact with them, and people who provide essential community services. So, for example, in most Canadian provinces, targeted influenza immunization programs (TIIPs) offer free influenza vaccinations to people aged 65 years or older, to people with chronic medical conditions, and to health care workers. Why Was This Study Done?: Some experts argue, however, that universal vaccination might provide populations with better protection from influenza. In 2000, the province of Ontario in Canada decided, therefore, to introduce a universal influenza immunization program (UIIP) to provide free influenza vaccination to everyone older than 6 months, the first large program of this kind in the world. A study published in 2008 showed that, following the introduction of the UIIP, vaccination rates in Ontario increased more than in other Canadian provinces. In addition, deaths from influenza and influenza-related use of health care facilities decreased more in Ontario than in provinces that continued to offer a TIIP. But is universal influenza vaccination good value for money? In this study, the researchers evaluate the cost-effectiveness of the Ontario UIIP by comparing the health outcomes and costs associated with its introduction with the health outcomes and costs associated with a hypothetical continuation of targeted influenza immunization. What Did the Researchers Do and Find?: The researchers used data on TIIP and UIIP vaccine uptake, physician visits, emergency department visits, hospitalizations for influenza, and deaths from influenza between 1997 and 2004 in Ontario and in nine Canadian states offering TIIPs, and Ontario cost data, in their “cost-utility” analysis. This type of analysis estimates the additional cost required to generate a year of perfect health (a quality-adjusted life-year or QALY) through the introduction of an intervention. QALYs are calculated by multiplying the time spent in a certain health state by a measure of the quality of that health state. The researchers report that the cost of Ontario's UIIP was about twice as much as the cost of a TIIP for the province. However, the introduction of the UIIP reduced the number of influenza cases by nearly two-thirds and reduced deaths from influenza by more than a quarter compared with what would have been expected had the province continued to offer a TIIP, an overall saving of 1,134 QALYs. Furthermore, the reduction in influenza cases halved influenza-related health care costs, mainly because of reductions in hospitalization. Overall, this means that the additional cost to Ontario of saving one QALY through the introduction of the UIIP was Can$10,797, an “incremental cost-effectiveness ratio” of $10,797 per QALY gained. What Do These Findings Mean?: In Canada, an intervention is considered cost-effective from the point of view of a health care purchaser if it costs less than Canadian $50,000 to gain one QALY. These findings indicate, therefore, that for Ontario the introduction of the UIIP is economically attractive. Indeed, the researchers calculate that even if the costs of the UIIP were to double, the additional cost of saving one QALY by introducing universal immunization would remain below $50,000. Other “sensitivity” analyses undertaken by the researchers also indicate that universal immunization is likely to be effective and cost-effective in Ontario if other key assumptions and/or data included in the calculations are varied within reasonable limits. Given these findings, the researchers suggest that a UIIP might be an appealing intervention in other Canadian provinces and in other high-income countries where influenza transmission and health-care costs are broadly similar to those in Ontario. Additional Information: Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000256.
Suggested Citation
Beate Sander & Jeffrey C Kwong & Chris T Bauch & Andreas Maetzel & Allison McGeer & Janet M Raboud & Murray Krahn, 2010.
"Economic Appraisal of Ontario's Universal Influenza Immunization Program: A Cost-Utility Analysis,"
PLOS Medicine, Public Library of Science, vol. 7(4), pages 1-11, April.
Handle:
RePEc:plo:pmed00:1000256
DOI: 10.1371/journal.pmed.1000256
Download full text from publisher
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- David N Fisman & Ashleigh R Tuite, 2011.
"Estimation of the Health Impact and Cost-Effectiveness of Influenza Vaccination with Enhanced Effectiveness in Canada,"
PLOS ONE, Public Library of Science, vol. 6(11), pages 1-9, November.
- Joke Bilcke & Samuel Coenen & Philippe Beutels, 2014.
"Influenza-Like-Illness and Clinically Diagnosed Flu: Disease Burden, Costs and Quality of Life for Patients Seeking Ambulatory Care or No Professional Care at All,"
PLOS ONE, Public Library of Science, vol. 9(7), pages 1-11, July.
- Patrick Saunders-Hastings & Bryson Quinn Hayes & Robert Smith? & Daniel Krewski, 2017.
"Modelling community-control strategies to protect hospital resources during an influenza pandemic in Ottawa, Canada,"
PLOS ONE, Public Library of Science, vol. 12(6), pages 1-26, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pmed00:1000256. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosmedicine (email available below). General contact details of provider: https://journals.plos.org/plosmedicine/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.