IDEAS home Printed from https://ideas.repec.org/a/plo/pmed00/0040218.html
   My bibliography  Save this article

Optimizing the Dose of Pre-Pandemic Influenza Vaccines to Reduce the Infection Attack Rate

Author

Listed:
  • Steven Riley
  • Joseph T Wu
  • Gabriel M Leung

Abstract

Background: The recent spread of avian influenza in wild birds and poultry may be a precursor to the emergence of a 1918-like human pandemic. Therefore, stockpiles of human pre-pandemic vaccine (targeted at avian strains) are being considered. For many countries, the principal constraint for these vaccine stockpiles will be the total mass of antigen maintained. We tested the hypothesis that lower individual doses (i.e., less than the recommended dose for maximum protection) may provide substantial extra community-level benefits because they would permit wider vaccine coverage for a given total size of antigen stockpile. Methods and Findings: We used a mathematical model to predict infection attack rates under different policies. The model incorporated both an individual's response to vaccination at different doses and the process of person-to-person transmission of pandemic influenza. We found that substantial reductions in the attack rate are likely if vaccines are given to more people at lower doses. These results are applicable to all three vaccine candidates for which data are available. As a guide to the magnitude of the effect, we simulated epidemics based on historical studies of immunogenicity. For example, for one of the vaccines for which data are available, the attack rate would drop from 67.6% to 58.7% if 160 out of the total US population of 300 million were given an optimal dose rather than 20 out of 300 million given the maximally protective dose (as promulgated in the US National Pandemic Preparedness Plan). Our results are conservative with respect to a number of alternative assumptions about the precise nature of vaccine protection. We also considered a model variant that includes a single high-risk subgroup representing children. For smaller stockpile sizes that allow vaccine to be offered only to the high-risk group at the optimal dose, the predicted benefits of using the homogenous model formed a lower bound in the presence of a risk group, even when the high-risk group was twice as infective and twice as susceptible. Conclusions: In addition to individual-level protection (i.e., vaccine efficacy), the population-level implications of pre-pandemic vaccine programs should be considered when deciding on stockpile size and dose. Our results suggest that a lower vaccine dose may be justified in order to increase population coverage, thereby reducing the infection attack rate overall. Steven Riley and colleagues examine the potential benefits of "stretching" a limited supply of vaccine and suggest that substantial reductions in the attack rate are possible if vaccines are given to more people at lower doses. Background.: Every winter, millions of people catch influenza, a viral infection of the nose, throat, and airways. Most recover quickly, but the disease can be deadly. In the US, seasonal influenza outbreaks (epidemics) cause 36,000 excess deaths annually. And now there are fears that an avian (bird) influenza virus might trigger a human influenza pandemic—a global epidemic that could kill millions. Seasonal epidemics occur because flu viruses continually make small changes to their hemagglutinin and neuraminidase molecules, the viral proteins (antigens) that the immune system recognizes. Because of this “antigenic drift,” an immune system response (which can be induced by catching flu or by vaccination with disabled circulating influenza strains) that combats flu one year may provide only partial protection the next year. “Antigenic shift” (large changes in flu antigens) can cause pandemics because communities have no immunity to the changed virus. Why Was This Study Done?: Although avian influenza virus, which contains a hemagglutinin type that differs from currently circulating human flu viruses, has caused a few cases of human influenza, it has not started a human pandemic yet because it cannot move easily between people. If it acquires this property, which will probably involve further small antigenic changes, it could kill millions of people before scientists can develop an effective vaccine against it. To provide some interim protection, many countries are preparing stockpiles of “pre-pandemic” vaccines targeted against the avian virus. The US, for example, plans to store enough pre-pandemic vaccine to provide maximum protection to 20 million people (including key health workers) out of its population of 300 million. But, given a limited stockpile of pre-pandemic vaccine, might giving more people a lower dose of vaccine, which might reduce the number of people susceptible to infection and induce herd immunity by preventing efficient transmission of the flu virus, be a better way to limit the spread of pandemic influenza? In this study, the researchers have used mathematical modeling to investigate this question. What Did the Researchers Do and Find?: To predict the infection rates associated with different vaccination policies, the researchers developed a mathematical model that incorporates data on human immune responses induced with three experimental vaccines against the avian virus and historical data on the person–person transmission of previous pandemic influenza viruses. For all the vaccines, the model predicts that giving more people a low dose of the vaccine would limit the spread of influenza better than giving fewer people the high dose needed for full individual protection. For example, the researchers estimate that dividing the planned US stockpile of one experimental vaccine equally between 160 million people instead of giving it at the fully protective dose to 20 million people might avert about 27 million influenza cases in less than year. However, giving the maximally protective dose to the 9 million US health-care workers and using the remaining vaccine at a lower dose to optimize protection within the general population might avert only 14 million infections. What Do These Findings Mean?: These findings suggest that, given a limited stockpile of pre-pandemic vaccine, increasing the population coverage of vaccination by using low doses of vaccine might reduce the overall influenza infection rate more effectively than vaccinating fewer people with fully protective doses of vaccine. However, because the researchers' model includes many assumptions, it can only give an indication of how different strategies might perform, not firm numbers for how many influenza cases each strategy is likely to avert. Before public-health officials use this or a similar model to help them decide the best way to use pre-pandemic vaccines to control a human influenza pandemic, they will need more information about the efficacy of these vaccines and about transmission rates of currently circulating viruses. They will also need to know whether pre-pandemic vaccines actually provide good protection against the pandemic virus, as assumed in this study, before they can recommend mass immunization with low doses of pre-pandemic vaccine, selective vaccination with high doses, or a mixed strategy. Additional Information.: Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040218.

Suggested Citation

  • Steven Riley & Joseph T Wu & Gabriel M Leung, 2007. "Optimizing the Dose of Pre-Pandemic Influenza Vaccines to Reduce the Infection Attack Rate," PLOS Medicine, Public Library of Science, vol. 4(6), pages 1-9, June.
  • Handle: RePEc:plo:pmed00:0040218
    DOI: 10.1371/journal.pmed.0040218
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0040218
    Download Restriction: no

    File URL: https://journals.plos.org/plosmedicine/article/file?id=10.1371/journal.pmed.0040218&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pmed.0040218?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "The benefits of combining early aspecific vaccination with later specific vaccination," European Journal of Operational Research, Elsevier, vol. 271(2), pages 606-619.
    2. Laura Matrajt & M Elizabeth Halloran & Ira M Longini Jr, 2013. "Optimal Vaccine Allocation for the Early Mitigation of Pandemic Influenza," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-15, March.
    3. Baba, Isa Abdullahi & Hincal, Evren, 2018. "A model for influenza with vaccination and awareness," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 49-55.
    4. Vernon J Lee & Mei Yin Tok & Vincent T Chow & Kai Hong Phua & Eng Eong Ooi & Paul A Tambyah & Mark I Chen, 2009. "Economic Analysis of Pandemic Influenza Vaccination Strategies in Singapore," PLOS ONE, Public Library of Science, vol. 4(9), pages 1-8, September.
    5. Yang, Junyuan & Yang, Li & Jin, Zhen, 2023. "Optimal strategies of the age-specific vaccination and antiviral treatment against influenza," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pmed00:0040218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosmedicine (email available below). General contact details of provider: https://journals.plos.org/plosmedicine/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.