IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1009974.html
   My bibliography  Save this article

Genomic legacy of migration in endangered caribou

Author

Listed:
  • Maria Cavedon
  • Bridgett vonHoldt
  • Mark Hebblewhite
  • Troy Hegel
  • Elizabeth Heppenheimer
  • Dave Hervieux
  • Stefano Mariani
  • Helen Schwantje
  • Robin Steenweg
  • Jessica Theoret
  • Megan Watters
  • Marco Musiani

Abstract

Wide-ranging animals, including migratory species, are significantly threatened by the effects of habitat fragmentation and habitat loss. In the case of terrestrial mammals, this results in nearly a quarter of species being at risk of extinction. Caribou are one such example of a wide-ranging, migratory, terrestrial, and endangered mammal. In populations of caribou, the proportion of individuals considered as “migrants” can vary dramatically. There is therefore a possibility that, under the condition that migratory behavior is genetically determined, those individuals or populations that are migratory will be further impacted by humans, and this impact could result in the permanent loss of the migratory trait in some populations. However, genetic determination of migration has not previously been studied in an endangered terrestrial mammal. We examined migratory behavior of 139 GPS-collared endangered caribou in western North America and carried out genomic scans for the same individuals. Here we determine a genetic subdivision of caribou into a Northern and a Southern genetic cluster. We also detect >50 SNPs associated with migratory behavior, which are in genes with hypothesized roles in determining migration in other organisms. Furthermore, we determine that propensity to migrate depends upon the proportion of ancestry in individual caribou, and thus on the evolutionary history of its migratory and sedentary subspecies. If, as we report, migratory behavior is influenced by genes, caribou could be further impacted by the loss of the migratory trait in some isolated populations already at low numbers. Our results indicating an ancestral genetic component also suggest that the migratory trait and their associated genetic mutations could not be easily re-established when lost in a population.Author summary: Genetic determination of migration has not previously been studied in an endangered terrestrial mammal. The use of global positioning system (GPS) transmitters permitted the detection of migratory or sedentary movements of 139 endangered caribou. The presence of both migratory and resident phenotypes in sympatry allowed for us to examine genomic differences among individuals that had experienced similar environments prior to the initiation of migration. In this study, we genotyped 139 caribou using RAD sequencing, and used these genotypes to assess population structure and investigate potential genetic associations with migration. We detected >50 SNPs associated to migration. These SNPs were found in genes with hypothesized roles in determining migration in other organisms. In addition, propensity to migrate depended upon the proportion of Northern or Southern ancestry in individual caribou, and thus on the evolutionary history of its migratory and sedentary subspecies dating back to the last glaciation. We believe that our concerns for the loss of migration in caribou are transferable to other species and systems where there are documented declines, and migration is likewise associated with genes. If–as we reported–migratory behavior is determined by ancestral genes, species could be further impacted, possibly by the loss of the migratory trait in some populations already at low numbers. This loss could perhaps be averted with the maintenance of critical seasonal habitats within and between seasonal ranges.

Suggested Citation

  • Maria Cavedon & Bridgett vonHoldt & Mark Hebblewhite & Troy Hegel & Elizabeth Heppenheimer & Dave Hervieux & Stefano Mariani & Helen Schwantje & Robin Steenweg & Jessica Theoret & Megan Watters & Marc, 2022. "Genomic legacy of migration in endangered caribou," PLOS Genetics, Public Library of Science, vol. 18(2), pages 1-25, February.
  • Handle: RePEc:plo:pgen00:1009974
    DOI: 10.1371/journal.pgen.1009974
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1009974
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1009974&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1009974?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1009974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.