IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1008827.html
   My bibliography  Save this article

Population genetic models of GERP scores suggest pervasive turnover of constrained sites across mammalian evolution

Author

Listed:
  • Christian D Huber
  • Bernard Y Kim
  • Kirk E Lohmueller

Abstract

Comparative genomic approaches have been used to identify sites where mutations are under purifying selection and of functional consequence by searching for sequences that are conserved across distantly related species. However, the performance of these approaches has not been rigorously evaluated under population genetic models. Further, short-lived functional elements may not leave a footprint of sequence conservation across many species. We use simulations to study how one measure of conservation, the Genomic Evolutionary Rate Profiling (GERP) score, relates to the strength of selection (Nes). We show that the GERP score is related to the strength of purifying selection. However, changes in selection coefficients or functional elements over time (i.e. functional turnover) can strongly affect the GERP distribution, leading to unexpected relationships between GERP and Nes. Further, we show that for functional elements that have a high turnover rate, adding more species to the analysis does not necessarily increase statistical power. Finally, we use the distribution of GERP scores across the human genome to compare models with and without turnover of sites where mutations are under purifying selection. We show that mutations in 4.51% of the noncoding human genome are under purifying selection and that most of this sequence has likely experienced changes in selection coefficients throughout mammalian evolution. Our work reveals limitations to using comparative genomic approaches to identify deleterious mutations. Commonly used GERP score thresholds miss over half of the noncoding sites in the human genome where mutations are under purifying selection.Author summary: One of the most significant and challenging tasks in modern genomics is to assess the functional consequences of a particular nucleotide change in a genome. A common approach to address this challenge prioritizes sequences that share similar nucleotides across distantly related species, with the rationale that mutations at such positions were deleterious and removed from the population by purifying natural selection. Our manuscript shows that one popular measure of sequence conservation, the GERP score, performs well at identifying selected mutations if mutations at a site were under selection across all of mammalian evolution. Changes in selection at a given site dramatically reduces the power of GERP to detect selected mutations in humans. We also combine population genetic models with the distribution of GERP scores at noncoding sites across the human genome to show that the degree of selection at individual sites has changed throughout mammalian evolution. Importantly, we demonstrate that at least 80 Mb of noncoding sequence under purifying selection in humans will not have extreme GERP scores and will likely be missed by modern comparative genomic approaches. Our work argues that new approaches, potentially based on genetic variation within species, will be required to identify deleterious mutations.

Suggested Citation

  • Christian D Huber & Bernard Y Kim & Kirk E Lohmueller, 2020. "Population genetic models of GERP scores suggest pervasive turnover of constrained sites across mammalian evolution," PLOS Genetics, Public Library of Science, vol. 16(5), pages 1-26, May.
  • Handle: RePEc:plo:pgen00:1008827
    DOI: 10.1371/journal.pgen.1008827
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008827
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1008827&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1008827?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1008827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.