Author
Listed:
- Alexander Platt
- Alyssa Pivirotto
- Jared Knoblauch
- Jody Hey
Abstract
Allele age has long been a focus of population genetic research, primarily because it can be an important clue to the fitness effects of an allele. By virtue of their effects on fitness, alleles under directional selection are expected to be younger than neutral alleles of the same frequency. We developed a new coalescent-based estimator of a close proxy for allele age, the time when a copy of an allele first shares common ancestry with other chromosomes in a sample not carrying that allele. The estimator performs well, including for the very rarest of alleles that occur just once in a sample, with a bias that is typically negative. The estimator is mostly insensitive to population demography and to factors that can arise in population genomic pipelines, including the statistical phasing of chromosomes. Applications to 1000 Genomes Data and UK10K genome data confirm predictions that singleton alleles that alter proteins are significantly younger than those that do not, with a greater difference in the larger UK10K dataset, as expected. The 1000 Genomes populations varied markedly in their distributions for singleton allele ages, suggesting that these distributions can be used to inform models of demographic history, including recent events that are only revealed by their impacts on the ages of very rare alleles.Author summary: We developed a way to estimate the time when a copy of a gene most recently shared ancestry with other copies of that gene. This is also an estimate of the upper bound of when a mutation has arisen, and it can be used to study the ages of alleles that are found in a population. The method can be applied to the very rarest alleles found only once in a sample, even in studies of many thousands of genomes. We tested the method extensively, found it performs well, and can be used under a wide variety of conditions. We applied it to 1000 Genomes project data (26 populations) and the UK10K data (over 7000 genomes) and found clear evidence that alleles that change proteins are younger than alleles that do not, as expected. We also observed wide variation in the ages of alleles at low frequency among the 1000 Genome project populations, indicating that our method could be used to study the demographic history of human populations. Going forward, the estimator should be useful for many kinds of questions in population genomics, particularly as sample sizes continue to grow.
Suggested Citation
Alexander Platt & Alyssa Pivirotto & Jared Knoblauch & Jody Hey, 2019.
"An estimator of first coalescent time reveals selection on young variants and large heterogeneity in rare allele ages among human populations,"
PLOS Genetics, Public Library of Science, vol. 15(8), pages 1-25, August.
Handle:
RePEc:plo:pgen00:1008340
DOI: 10.1371/journal.pgen.1008340
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1008340. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.