Author
Listed:
- Jude Gibson
- Tom C Russ
- Toni-Kim Clarke
- David M Howard
- Robert F Hillary
- Kathryn L Evans
- Rosie M Walker
- Mairead L Bermingham
- Stewart W Morris
- Archie Campbell
- Caroline Hayward
- Alison D Murray
- David J Porteous
- Steve Horvath
- Ake T Lu
- Andrew M McIntosh
- Heather C Whalley
- Riccardo E Marioni
Abstract
'Epigenetic age acceleration' is a valuable biomarker of ageing, predictive of morbidity and mortality, but for which the underlying biological mechanisms are not well established. Two commonly used measures, derived from DNA methylation, are Horvath-based (Horvath-EAA) and Hannum-based (Hannum-EAA) epigenetic age acceleration. We conducted genome-wide association studies of Horvath-EAA and Hannum-EAA in 13,493 unrelated individuals of European ancestry, to elucidate genetic determinants of differential epigenetic ageing. We identified ten independent SNPs associated with Horvath-EAA, five of which are novel. We also report 21 Horvath-EAA-associated genes including several involved in metabolism (NHLRC, TPMT) and immune system pathways (TRIM59, EDARADD). GWAS of Hannum-EAA identified one associated variant (rs1005277), and implicated 12 genes including several involved in innate immune system pathways (UBE2D3, MANBA, TRIM46), with metabolic functions (UBE2D3, MANBA), or linked to lifespan regulation (CISD2). Both measures had nominal inverse genetic correlations with father’s age at death, a rough proxy for lifespan. Nominally significant genetic correlations between Hannum-EAA and lifestyle factors including smoking behaviours and education support the hypothesis that Hannum-based epigenetic ageing is sensitive to variations in environment, whereas Horvath-EAA is a more stable cellular ageing process. We identified novel SNPs and genes associated with epigenetic age acceleration, and highlighted differences in the genetic architecture of Horvath-based and Hannum-based epigenetic ageing measures. Understanding the biological mechanisms underlying individual differences in the rate of epigenetic ageing could help explain different trajectories of age-related decline.Author summary: DNA methylation, an epigenetic process, is known to vary with age. Methylation levels at specific sites across the genome can be combined to form estimates of age known as ‘epigenetic age’. The difference between epigenetic age and chronological age is referred to as ‘epigenetic age acceleration’, with positive values indicating that a person is biologically older than their years. Understanding why some people seem to age faster than others could shed light on the biological processes behind age-related decline; however, the mechanisms underlying differential rates of epigenetic ageing are largely unknown. Here, we investigate genetic determinants of two commonly used epigenetic age acceleration measures, based on the Horvath and Hannum epigenetic clocks. We report novel genetic variants and genes associated with epigenetic age acceleration, and highlight differences in the genetic factors influencing these two measures. We identify ten genetic variants and 21 genes associated with Horvath-based epigenetic age acceleration, and one variant and 12 genes associated with the Hannum-based measure. There were no genome-wide significant variants or genes in common between the Horvath-based and Hannum-based measures, supporting the hypothesis that they represent different aspects of ageing. Our results suggest a partial genetic basis underlying some previously reported phenotypic associations.
Suggested Citation
Jude Gibson & Tom C Russ & Toni-Kim Clarke & David M Howard & Robert F Hillary & Kathryn L Evans & Rosie M Walker & Mairead L Bermingham & Stewart W Morris & Archie Campbell & Caroline Hayward & Aliso, 2019.
"A meta-analysis of genome-wide association studies of epigenetic age acceleration,"
PLOS Genetics, Public Library of Science, vol. 15(11), pages 1-30, November.
Handle:
RePEc:plo:pgen00:1008104
DOI: 10.1371/journal.pgen.1008104
Download full text from publisher
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Markon, Kristian E. & Mann, Frank & Freilich, Colin & Cole, Steve & Krueger, Robert F., 2024.
"Associations between epigenetic age acceleration and longitudinal measures of psychosocioeconomic stress and status,"
Social Science & Medicine, Elsevier, vol. 352(C).
- Lucas A. Mavromatis & Daniel B. Rosoff & Andrew S. Bell & Jeesun Jung & Josephin Wagner & Falk W. Lohoff, 2023.
"Multi-omic underpinnings of epigenetic aging and human longevity,"
Nature Communications, Nature, vol. 14(1), pages 1-15, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1008104. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.