IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1008045.html
   My bibliography  Save this article

Discovery and characterization of variance QTLs in human induced pluripotent stem cells

Author

Listed:
  • Abhishek K Sarkar
  • Po-Yuan Tung
  • John D Blischak
  • Jonathan E Burnett
  • Yang I Li
  • Matthew Stephens
  • Yoav Gilad

Abstract

Quantification of gene expression levels at the single cell level has revealed that gene expression can vary substantially even across a population of homogeneous cells. However, it is currently unclear what genomic features control variation in gene expression levels, and whether common genetic variants may impact gene expression variation. Here, we take a genome-wide approach to identify expression variance quantitative trait loci (vQTLs). To this end, we generated single cell RNA-seq (scRNA-seq) data from induced pluripotent stem cells (iPSCs) derived from 53 Yoruba individuals. We collected data for a median of 95 cells per individual and a total of 5,447 single cells, and identified 235 mean expression QTLs (eQTLs) at 10% FDR, of which 79% replicate in bulk RNA-seq data from the same individuals. We further identified 5 vQTLs at 10% FDR, but demonstrate that these can also be explained as effects on mean expression. Our study suggests that dispersion QTLs (dQTLs) which could alter the variance of expression independently of the mean can have larger fold changes, but explain less phenotypic variance than eQTLs. We estimate 4,015 individuals as a lower bound to achieve 80% power to detect the strongest dQTLs in iPSCs. These results will guide the design of future studies on understanding the genetic control of gene expression variance.Author summary: Common genetic variation can alter the level of average gene expression in human tissues, and through changes in gene expression have downstream consequences on cell function, human development, and human disease. However, human tissues are composed of many cells, each with its own level of gene expression. With advances in single cell sequencing technologies, we can now go beyond simply measuring the average level of gene expression in a tissue sample and directly measure cell-to-cell variance in gene expression. We hypothesized that genetic variation could also alter gene expression variance, potentially revealing new insights into human development and disease. To test this hypothesis, we used single cell RNA sequencing to directly measure gene expression variance in multiple individuals, and then associated the gene expression variance with genetic variation in those same individuals. Our results suggest that effects on gene expression variance are smaller than effects on mean expression, relative to how much the phenotypes vary between individuals, and will require much larger studies than previously thought to detect.

Suggested Citation

  • Abhishek K Sarkar & Po-Yuan Tung & John D Blischak & Jonathan E Burnett & Yang I Li & Matthew Stephens & Yoav Gilad, 2019. "Discovery and characterization of variance QTLs in human induced pluripotent stem cells," PLOS Genetics, Public Library of Science, vol. 15(4), pages 1-16, April.
  • Handle: RePEc:plo:pgen00:1008045
    DOI: 10.1371/journal.pgen.1008045
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008045
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1008045&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1008045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katharina T. Schmid & Barbara Höllbacher & Cristiana Cruceanu & Anika Böttcher & Heiko Lickert & Elisabeth B. Binder & Fabian J. Theis & Matthias Heinig, 2021. "scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    2. Jasper Panten & Tobias Heinen & Christina Ernst & Nils Eling & Rebecca E. Wagner & Maja Satorius & John C. Marioni & Oliver Stegle & Duncan T. Odom, 2024. "The dynamic genetic determinants of increased transcriptional divergence in spermatids," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1008045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.